
True Lies and False Truths
On the importance of evidence in programming

Andres Löh
NWERC, 2021-03-27

Well-Typed
The Haskell Consultants



Level 1 – A simple test

isValidEmail :: String -> Bool

Checks if an email address is (syntactically) valid.

someCode = do
txt <- readInput
if isValidEmail txt
then someOtherFunction txt
else ...

someOtherFunction :: String -> ...
someOtherFunction email =
...
sendEmailTo email message
... Did we already validate this?

We haven’t actually
learned
anything here . . .

Well-Typed



Level 1 – A simple test

isValidEmail :: String -> Bool

Checks if an email address is (syntactically) valid.

someCode = do
txt <- readInput
if isValidEmail txt
then someOtherFunction txt
else ...

someOtherFunction :: String -> ...
someOtherFunction email =
...
sendEmailTo email message
... Did we already validate this?

We haven’t actually
learned
anything here . . .

Well-Typed



Level 1 – A simple test

isValidEmail :: String -> Bool

Checks if an email address is (syntactically) valid.

someCode = do
txt <- readInput
if isValidEmail txt
then someOtherFunction txt
else ...

someOtherFunction :: String -> ...
someOtherFunction email =
...
sendEmailTo email message
...

Did we already validate this?

We haven’t actually
learned
anything here . . .

Well-Typed



Level 1 – A simple test

isValidEmail :: String -> Bool

Checks if an email address is (syntactically) valid.

someCode = do
txt <- readInput
if isValidEmail txt
then someOtherFunction txt
else ...

someOtherFunction :: String -> ...
someOtherFunction email =
...
sendEmailTo email message
... Did we already validate this?

We haven’t actually
learned
anything here . . .

Well-Typed



Level 1 – A simple test

isValidEmail :: String -> Bool

Checks if an email address is (syntactically) valid.

someCode = do
txt <- readInput
if isValidEmail txt
then someOtherFunction txt
else ...

someOtherFunction :: String -> ...
someOtherFunction email =
...
sendEmailTo email message
... Did we already validate this?

We haven’t actually
learned
anything here . . .

Well-Typed



Booleans considered harmful



Provide evidence!

data Maybe a =
Nothing -- signals failure

| Just a -- signals success, carries evidence

isValidEmail :: String -> Bool

someCode = do
txt <- readInput
case isValidEmail txt of
Just email -> someOtherFunction email
Nothing -> ...

someOtherFunction :: Email -> ...
someOtherFunction email =
...

We get access to
email only if the
test was successful!

The type has changed! We know this is tested!

Well-Typed



Provide evidence!

data Maybe a =
Nothing -- signals failure

| Just a -- signals success, carries evidence

isValidEmail :: String -> Bool

someCode = do
txt <- readInput
case isValidEmail txt of
Just email -> someOtherFunction email
Nothing -> ...

someOtherFunction :: Email -> ...
someOtherFunction email =
...

We get access to
email only if the
test was successful!

The type has changed! We know this is tested!

Well-Typed



Provide evidence!

data Maybe a =
Nothing -- signals failure

| Just a -- signals success, carries evidence

isValidEmail :: String -> Maybe Email

someCode = do
txt <- readInput
case isValidEmail txt of
Just email -> someOtherFunction email
Nothing -> ...

someOtherFunction :: Email -> ...
someOtherFunction email =
...

We get access to
email only if the
test was successful!

The type has changed! We know this is tested!

Well-Typed



Provide evidence!

data Maybe a =
Nothing -- signals failure

| Just a -- signals success, carries evidence

isValidEmail :: String -> Maybe Email

someCode = do
txt <- readInput
case isValidEmail txt of
Just email -> someOtherFunction email
Nothing -> ...

someOtherFunction :: Email -> ...
someOtherFunction email =
...

We get access to
email only if the
test was successful!

The type has changed! We know this is tested!

Well-Typed



Provide evidence!

data Maybe a =
Nothing -- signals failure

| Just a -- signals success, carries evidence

isValidEmail :: String -> Maybe Email

someCode = do
txt <- readInput
case isValidEmail txt of
Just email -> someOtherFunction email
Nothing -> ...

someOtherFunction :: Email -> ...
someOtherFunction email =
...

We get access to
email only if the
test was successful!

The type has changed! We know this is tested!

Well-Typed



Provide evidence!

data Maybe a =
Nothing -- signals failure

| Just a -- signals success, carries evidence

isValidEmail :: String -> Maybe Email

someCode = do
txt <- readInput
case isValidEmail txt of
Just email -> someOtherFunction email
Nothing -> ...

someOtherFunction :: Email -> ...
someOtherFunction email =
...

We get access to
email only if the
test was successful!

The type has changed! We know this is tested!

Well-Typed



From Booleans to evidence

Before

▶ Test outcome is Bool .
▶ To the type system, False and True are interchangeable.
▶ Easy to forget a test.
▶ Easy to run a test unnecessarily often.

After

▶ Test outcome is Maybe something .
▶ Successful outcome provides evidence.
▶ We don’t get the evidence if the test fails.
▶ Functions requiring the evidence can rely on the test having

succeeded.

Well-Typed



From Booleans to evidence

Before

▶ Test outcome is Bool .
▶ To the type system, False and True are interchangeable.
▶ Easy to forget a test.
▶ Easy to run a test unnecessarily often.

After

▶ Test outcome is Maybe something .
▶ Successful outcome provides evidence.
▶ We don’t get the evidence if the test fails.
▶ Functions requiring the evidence can rely on the test having

succeeded.

Well-Typed



Boss key needed – What is an email?

We have used the type Email , but have not defined it . . .

▶ Defining a test that produces a Bool is easy.
▶ Is providing evidence equally easy?

We will revisit this question later and first look at other examples.

Well-Typed



Boss key needed – What is an email?

We have used the type Email , but have not defined it . . .

▶ Defining a test that produces a Bool is easy.
▶ Is providing evidence equally easy?

We will revisit this question later and first look at other examples.

Well-Typed



Level 2 – Summing elements

sumList :: List Int -> Int
sumList list =
if isEmpty list
then 0
else head list + sumList (tail list)

isEmpty :: List a -> Bool -- tests if a list is empty
head :: List a -> a -- first element of a non-empty list
tail :: List a -> List a -- other elements of a non-empty list

What if we
accidentally flip the
branches?

Well-Typed



Level 2 – Summing elements

sumList :: List Int -> Int
sumList list =
if isEmpty list
then 0
else head list + sumList (tail list)

isEmpty :: List a -> Bool -- tests if a list is empty
head :: List a -> a -- first element of a non-empty list
tail :: List a -> List a -- other elements of a non-empty list

What if we
accidentally flip the
branches?

Well-Typed



Level 2 – Summing elements

sumList :: List Int -> Int
sumList list =
if isEmpty list
then 0
else head list + sumList (tail list)

isEmpty :: List a -> Bool -- tests if a list is empty
head :: List a -> a -- first element of a non-empty list
tail :: List a -> List a -- other elements of a non-empty list

What if we
accidentally flip the
branches?

Well-Typed



Provide evidence!

isEmpty :: List a -> Maybe (a, List a)

Suitable evidence for a non-empty list is exactly the head and the tail!

sumList :: List Int -> Int
sumList list =
case isEmpty list of
Nothing -> 0
Just (hd, tl) -> hd + sumList tl

Flipping the cases is no longer possible!

No more potential crashes!

Well-Typed



Provide evidence!

isEmpty :: List a -> Maybe (a, List a)

Suitable evidence for a non-empty list is exactly the head and the tail!

sumList :: List Int -> Int
sumList list =
case isEmpty list of
Nothing -> 0
Just (hd, tl) -> hd + sumList tl

Flipping the cases is no longer possible!

No more potential crashes!

Well-Typed



Provide evidence!

isEmpty :: List a -> Maybe (a, List a)

Suitable evidence for a non-empty list is exactly the head and the tail!

sumList :: List Int -> Int
sumList list =
case isEmpty list of
Nothing -> 0
Just (hd, tl) -> hd + sumList tl

Flipping the cases is no longer possible!

No more potential crashes!

Well-Typed



Provide evidence!

isEmpty :: List a -> Maybe (a, List a)

Suitable evidence for a non-empty list is exactly the head and the tail!

sumList :: List Int -> Int
sumList list =
case isEmpty list of
Nothing -> 0
Just (hd, tl) -> hd + sumList tl

Flipping the cases is no longer possible!

No more potential crashes!

Well-Typed



Secret passage – The definition of lists

In Haskell, lists are in fact defined as
data List a =

Nil
| Cons a (List a)

sumList :: List Int -> Int
sumList list =
case list of
Nil -> 0
Cons hd tl -> hd + sumList tl

“Sum types” and “pattern matching” are powerful concepts!

Well-Typed



Secret passage – The definition of lists

In Haskell, lists are in fact defined as
data List a =

Nil
| Cons a (List a)

sumList :: List Int -> Int
sumList list =
case list of
Nil -> 0
Cons hd tl -> hd + sumList tl

“Sum types” and “pattern matching” are powerful concepts!

Well-Typed



Secret passage – The definition of lists

In Haskell, lists are in fact defined as
data List a =

Nil
| Cons a (List a)

sumList :: List Int -> Int
sumList list =
case list of
Nil -> 0
Cons hd tl -> hd + sumList tl

“Sum types” and “pattern matching” are powerful concepts!

Well-Typed



Level 3 – Filtering a list

filter :: (a -> Bool) -> List a -> List a
filter f list =
case list of
Nil -> Nil
Cons hd tl ->
if f hd
then ...
else ...

Do we actually want the elements that pass or fail the test?

Well-Typed



Level 3 – Filtering a list

filter :: (a -> Bool) -> List a -> List a
filter f list =
case list of
Nil -> Nil
Cons hd tl ->
if f hd
then ...
else ...

Do we actually want the elements that pass or fail the test?

Well-Typed



Level 3 – Filtering a list

filter :: (a -> Bool) -> List a -> List a
filter f list =
case list of
Nil -> Nil
Cons hd tl ->
if f hd
then Cons hd (filter f tl)
else filter f tl

Well-Typed



Provide evidence!

filter :: (a -> Maybe b) -> List a -> List b
filter f list =
case list of
Nil -> Nil
Cons hd tl ->
case f hd of
Just ev -> Cons ev (filter f tl)
Nothing -> filter f tl

Well-Typed



Time trial – Filtering even elements

even :: Int -> Bool
even i = mod i 2 == 0

filterEvens :: List Int -> List Int
filterEvens list = filter even list

Well-Typed



Provide evidence!

data Even = Twice Int

even :: Int -> Maybe Even
even i =
case divMod i 2 of
(j, 0) -> Just (Twice j)
_ -> Nothing

Examples:

even 42 = Just (Twice 21)
even 17 = Nothing

filterEvens :: List Int -> List Even
filterEvens list = filter even list

The type is now much more informative!

Well-Typed



Provide evidence!

data Even = Twice Int

even :: Int -> Maybe Even
even i =
case divMod i 2 of
(j, 0) -> Just (Twice j)
_ -> Nothing

Examples:

even 42 = Just (Twice 21)
even 17 = Nothing

filterEvens :: List Int -> List Even
filterEvens list = filter even list

The type is now much more informative!

Well-Typed



Provide evidence!

data Even = Twice Int

even :: Int -> Maybe Even
even i =
case divMod i 2 of
(j, 0) -> Just (Twice j)
_ -> Nothing

Examples:

even 42 = Just (Twice 21)
even 17 = Nothing

filterEvens :: List Int -> List Even
filterEvens list = filter even list

The type is now much more informative!

Well-Typed



Provide evidence!

data Even = Twice Int

even :: Int -> Maybe Even
even i =
case divMod i 2 of
(j, 0) -> Just (Twice j)
_ -> Nothing

Examples:

even 42 = Just (Twice 21)
even 17 = Nothing

filterEvens :: List Int -> List Even
filterEvens list = filter even list

The type is now much more informative!

Well-Typed



Easter egg – Evidence of failure

data Odd = TwicePlusOne Int

parity :: Int -> Either Even Odd
parity i =
case divMod i 2 of
(j, 0) -> Left (Twice j)
(j, 1) -> Right (TwicePlusOne j)

data Either a b =
Left a -- denotes one outcome, carries evidence

| Right b -- denotes the other outcome, carries evidence

Well-Typed



Easter egg – Evidence of failure

data Odd = TwicePlusOne Int

parity :: Int -> Either Even Odd
parity i =
case divMod i 2 of
(j, 0) -> Left (Twice j)
(j, 1) -> Right (TwicePlusOne j)

data Either a b =
Left a -- denotes one outcome, carries evidence

| Right b -- denotes the other outcome, carries evidence

Well-Typed



Partitioning

Haskell has:
partition :: (a -> Bool) -> (List a, List a)

Better would be
partition :: (a -> Either b c) -> (List b, List c)

Well-Typed



Partitioning

Haskell has:
partition :: (a -> Bool) -> (List a, List a)

Better would be
partition :: (a -> Either b c) -> (List b, List c)

Well-Typed



Boss – Evidence for complex tests

Let’s revisit the beginning:

isValidEmail :: String -> Maybe Email

What is suitable evidence for having performed a complex validation?

Well-Typed



Cheating is allowed – Lightweight evidence

data Email = MkEmail String

We don’t need actual evidence –
an abstract type is often enough . . .

▶ Email is isomorphic to String , but a different type.

▶ We have full control over the interface of Email .
▶ E.g., most String operations do not make sense on Email at

all (and we do not need to introduce them).
▶ We can make sure that the only way to produce a value of type

Email is isValidEmail , which isolates the risky code to one
function.

▶ No danger of forgetting the test, no danger of duplicating the test.

Well-Typed



Cheating is allowed – Lightweight evidence

data Email = MkEmail String

We don’t need actual evidence –
an abstract type is often enough . . .

▶ Email is isomorphic to String , but a different type.

▶ We have full control over the interface of Email .
▶ E.g., most String operations do not make sense on Email at

all (and we do not need to introduce them).
▶ We can make sure that the only way to produce a value of type

Email is isValidEmail , which isolates the risky code to one
function.

▶ No danger of forgetting the test, no danger of duplicating the test.

Well-Typed



How to win

▶ Whenever possible, replace Booleans with types that carry
evidence!

▶ Introduce new types for values that have passed tests, even if
their internal representation has not changed!

Avoid:

▶ Functions with implicit assumptions about their inputs.
▶ Unclear boundaries between untrusted and trusted values.
▶ Situations where switching cases would not make the

type-checker complain!

Well-Typed



How to win

▶ Whenever possible, replace Booleans with types that carry
evidence!

▶ Introduce new types for values that have passed tests, even if
their internal representation has not changed!

Avoid:

▶ Functions with implicit assumptions about their inputs.
▶ Unclear boundaries between untrusted and trusted values.
▶ Situations where switching cases would not make the

type-checker complain!

Well-Typed



Credits

The idea presented here is old:

▶ I learned it from Conor McBride around 2005 under the slogan
Learning by testing.

▶ Bob Harper wrote a famous blog post titled Boolean Blindness
about this topic in 2011.

▶ Alexis King wrote another influential blog post titled Parse, don’t
validate in 2019.

But under yet again different names, the idea certainly goes back even
further than that.

Well-Typed



Bonus level – Dependent types

In dependently typed languages (Agda, Idris, Coq, Lean, . . .), we can
provide “proper” evidence for far more interesting properties:

(==) :: a -> a -> Bool

Better:
(==) :: (x : a) -> (y : a) -> Either (x = y) (x ̸= y)

Well-Typed



Bonus level – Dependent types

In dependently typed languages (Agda, Idris, Coq, Lean, . . .), we can
provide “proper” evidence for far more interesting properties:

(==) :: a -> a -> Bool

Better:
(==) :: (x : a) -> (y : a) -> Either (x = y) (x ̸= y)

Well-Typed



Bonus level – Dependent types

In dependently typed languages (Agda, Idris, Coq, Lean, . . .), we can
provide “proper” evidence for far more interesting properties:

(==) :: a -> a -> Bool

Better:
(==) :: (x : a) -> (y : a) -> Either (x = y) (x ̸= y)

Well-Typed



Questions?

andres@well-typed.com


