A second prototype of a first prototype for Generic HASKELL

Andres Löh

15. November 2000
Overview

- Generic definitions (MPC-style)
- Implementation status
- Goals of future work on the prototype
Generic programming

- View Haskell **data** definitions as definitions for structured sum-of-product types
- Replace Haskell’s n-ary sums and products by binary sums and products
- Write functions based on structural recursion over datatypes, i.e. give clauses for $+$, \times etc.
- Use the same function for arbitrary datatypes
- Similar thing as **derive** in Haskell, but more general and well-defined
- Examples include **map**, **encode**, **size**, **reduce** (**crush**), **cata** (**fold**)
Generic programming

- View Haskell **data** definitions as definitions for structured sum-of-product types
- Replace Haskell’s \(n \)-ary sums and products by binary sums and products
- Write functions based on structural recursion over datatypes,
 i.e. give clauses for \(+, \times\) etc.
- Use the same function for arbitrary datatypes
- Similar thing as **derive** in Haskell, but more general and well-defined
- Examples include **map**, **encode**, **size**, **reduce** (**crush**), **cata** (**fold**)
Generic programming

• View Haskell `data` definitions as definitions for structured sum-of-product types
• Replace Haskell’s n-ary sums and products by binary sums and products
• Write functions based on structural recursion over datatypes,
 i. e. give clauses for $+$, \times etc.
• Use the same function for arbitrary datatypes
• Similar thing as `derive` in Haskell, but more general and well-defined
• Examples include `map`, `encode`, `size`, `reduce` (crush), `cata` (fold)
Generic programming

- View Haskell `data` definitions as definitions for structured sum-of-product types
- Replace Haskell’s n-ary sums and products by binary sums and products
- Write functions based on structural recursion over datatypes,
 i.e. give clauses for $+$, \times etc.
- Use the same function for arbitrary datatypes
- Similar thing as `derive` in Haskell, but more general and well-defined
- Examples include `map`, `encode`, `size`, `reduce` (crush), `cata` (fold)
Generic programming

- View Haskell \texttt{data} definitions as definitions for structured sum-of-product types
- Replace Haskell’s n-ary sums and products by binary sums and products
- Write functions based on structural recursion over datatypes, i.e. give clauses for $+$, \times etc.
- Use the same function for arbitrary datatypes
- Similar thing as \texttt{derive} in Haskell, but more general and well-defined
- Examples include \texttt{map}, \texttt{encode}, \texttt{size}, \texttt{reduce (crush)}, \texttt{cata (fold)}
Generic programming

- View Haskell `data` definitions as definitions for structured sum-of-product types
- Replace Haskell's n-ary sums and products by binary sums and products
- Write functions based on structural recursion over datatypes, i.e. give clauses for $+$, \times etc.
- Use the same function for arbitrary datatypes
- Similar thing as `derive` in Haskell, but more general and well-defined
- Examples include `map`, `encode`, `size`, `reduce (crush)`, `cata (fold)`
MPC-style definitions — example

This function encodes a value of arbitrary type into a list of bits.

\[
\begin{align*}
\text{Encode} \langle \kappa :: \Box \rangle & \quad :: \quad \kappa \to \star \\
\text{Encode} \langle \star \rangle \ t & \quad = \quad t \to [\text{Bit}] \\
\text{Encode} \langle \kappa_1 \to \kappa_2 \rangle \ t & \quad = \quad \forall a. \text{Encode} \langle \kappa_1 \rangle \ a \to \text{Encode} \langle \kappa_2 \rangle \ (t \ a)
\end{align*}
\]

\[
\begin{align*}
\text{encode} \langle t :: \kappa \rangle & \quad :: \quad \text{Encode} \langle \kappa \rangle \ t \\
\text{encode} \langle 1 \rangle & \quad = \quad [] \\
\text{encode} \langle + \rangle \ eA \ eB \ (\text{inl} \ a) & \quad = \quad 0 : eA \ a \\
\text{encode} \langle + \rangle \ eA \ eB \ (\text{inr} \ b) & \quad = \quad 1 : eB \ b \\
\text{encode} \langle \times \rangle \ eA \ eB \ (a, b) & \quad = \quad eA \ a \mathbin{\mathbin{\mathbin{|}}\mathbin{\mathbin{\mathbin{|}}} eB \ b
\end{align*}
\]
MPC-style definitions — continued

- Based on Hinze’s paper at MPC 2000
- No restriction to regular types.
- One polytypic declaration works for types of arbitrary kind.
 It consists of a type \(\text{Encode} \) and a function \(\text{encode} \) definition.
- If specialised to types of different kinds, the type of the generic function varies.
- The line
 \[
 \text{Encode} \langle \kappa_1 \rightarrow \kappa_2 \rangle \ t = \forall a. \text{Encode} \langle \kappa_1 \rangle \ a \rightarrow \text{Encode} \langle \kappa_2 \rangle \ (t \ a)
 \]
 can be left out, as it has to be as it is for the definition to be well-typed as a whole.
- The user has to supply:
 - the type of the function specialised to a type of kind \(\star \)
 - clauses for \(() \), constant types, \(+\) and \(\times\)
MPC-style definitions — continued

- Based on Hinze’s paper at MPC 2000
- No restriction to regular types.
- One polytypic declaration works for types of arbitrary kind. It consists of a type (\(\text{Encode} \)) and a function (\(\text{encode} \)) definition.
- If specialised to types of different kinds, the type of the generic function varies.
- The line
 \[
 \text{Encode}\langle \kappa_1 \rightarrow \kappa_2 \rangle t = \forall a. \text{Encode}\langle \kappa_1 \rangle a \rightarrow \text{Encode}\langle \kappa_2 \rangle (t \ a)
 \]
 can be left out, as it has to be as it is for the definition to be well-typed as a whole.
- The user has to supply:
 - the type of the function specialised to a type of kind \(\star \)
 - clauses for (\(\), constant types, + and \(\times \)
MPC-style definitions — continued

- Based on Hinze’s paper at MPC 2000
- No restriction to regular types.
- One polytypic declaration works for types of arbitrary kind.
 It consists of a type \((\text{Encode})\) and a function \((\text{encode})\) definition.
- If specialised to types of different kinds, the type of the generic function varies.
- The line
 \[
 \text{Encode}\langle\kappa_1 \rightarrow \kappa_2\rangle t = \forall a.\text{Encode}\langle\kappa_1\rangle a \rightarrow \text{Encode}\langle\kappa_2\rangle (t a)
 \]
 can be left out, as it has to be as it is for the definition to be well-typed as a whole.
- The user has to supply:
 - the type of the function specialised to a type of kind \(*\)
 - clauses for \(\text{()},\ \text{constant types}, +\) and \(\times\)
MPC-style definitions — continued

- Based on Hinze’s paper at MPC 2000
- No restriction to regular types.
- One polytypic declaration works for types of arbitrary kind. It consists of a type (Encode) and a function (encode) definition.
- If specialised to types of different kinds, the type of the generic function varies.
- The line
 \[\text{Encode} \langle \kappa_1 \rightarrow \kappa_2 \rangle t = \forall a. \text{Encode} \langle \kappa_1 \rangle a \rightarrow \text{Encode} \langle \kappa_2 \rangle (t\ a) \]
 can be left out, as it has to be as it is for the definition to be well-typed as a whole.
- The user has to supply:
 - the type of the function specialised to a type of kind \(\star \)
 - clauses for \((\), constant types, \(+\) and \(\times\)
MPC-style definitions — continued

- Based on Hinze’s paper at MPC 2000
- No restriction to regular types.
- One polytypic declaration works for types of arbitrary kind.
 It consists of a type (Encode) and a function (encode) definition.
- If specialised to types of different kinds, the type of the generic function varies.
- The line
 \[
 \text{Encode}(\kappa_1 \rightarrow \kappa_2) \ t = \forall a. \text{Encode}(\kappa_1) \ a \rightarrow \text{Encode}(\kappa_2) \ (t \ a)
 \]
 can be left out, as it has to be as it is for the definition to be well-typed as a whole.
- The user has to supply:
 - the type of the function specialised to a type of kind \(\star \)
 - clauses for \((\), constant types, \(+\) and \(\times\)
Based on Hinze’s paper at MPC 2000

- No restriction to regular types.
- One polytypic declaration works for types of arbitrary kind.
 It consists of a type (Encode) and a function (encode) definition.
- If specialised to types of different kinds, the type of the generic function varies.
- The line

\[
\text{Encode}\langle \kappa_1 \rightarrow \kappa_2 \rangle t = \forall a. \text{Encode}\langle \kappa_1 \rangle a \rightarrow \text{Encode}\langle \kappa_2 \rangle (t a)
\]

can be left out, as it has to be as it is for the definition to be well-typed as a whole.

- The user has to supply:
 - the type of the function specialised to a type of kind \(\star \)
 - clauses for \((\cdot) \), constant types, + and \(\times \)
MPC-style definitions — continued

- Based on Hinze’s paper at MPC 2000
- No restriction to regular types.
- One polytypic declaration works for types of arbitrary kind. It consists of a type (Encode) and a function (encode) definition.
- If specialised to types of different kinds, the type of the generic function varies.
- The line

\[
\text{Encode}(\kappa_1 \rightarrow \kappa_2) \, t = \forall a. \text{Encode}(\kappa_1) \, a \rightarrow \text{Encode}(\kappa_2) \, (t \, a)
\]

can be left out, as it has to be as it is for the definition to be well-typed as a whole.
- The user has to supply:
 - the type of the function specialised to a type of kind \(\star \)
 - clauses for (\(\), constant types, + and \(\times \)
Implementation

- Based on the work of Jan de Wit
- Written in Haskell 98 using UU_Scanner, UU_Parsing and UU_Pretty (and therefore needing GHC/Hugs extensions)
- Is supposed to be a quick hack in order to produce results soon
- We try to follow Hinze’s “Habilitationsschrift” which contains a chapter outlining implementation issues
Implementation — continued

Input A single file (.ghs) written in a subset of Haskell
(for example no modules, no type classes, only builtin infix operators)
with extensions for defining generic functions

Step 1 The file is parsed and grouped to
- data definitions
- polyvalue definitions
 (i.e. \textsc{mpc}-style generic function definitions)
- other stuff
Input A single file (.ghs) written in a subset of Haskell
(for example no modules, no type classes, only builtin infix operators)
with extensions for defining generic functions

Step 1 The file is parsed and grouped to
- **data** definitions
- **polyvalue** definitions
 (i. e. MPC-style generic function definitions)
- other stuff
Step 2 All defined datatypes are translated into structural equivalent types constructed only out of binary sums and products from constant types, i. e. no constructor names, no field labels.
Furthermore, we provide embedding functions from a “real” datatype to its structural equivalent type.

Step 3 The polyvalue definitions are translated line by line into ordinary Haskell functions.

Step 4 For every pair of a generic function and a datatype definition a specialisation is generated from the function to the datatype.
(This is possible because MPC-style definitions are not specific to a kind!)

Output A single file (.hs) containing Haskell 98 with extensions (we need rank-2 type signatures)
Step 2 All defined datatypes are translated into structural equivalent types constructed only out of binary sums and products from constant types, i.e. no constructor names, no field labels. Furthermore, we provide embedding functions from a “real” datatype to its structural equivalent type.

Step 3 The polyvalue definitions are translated line by line into ordinary Haskell functions.

Step 4 For every pair of a generic function and a datatype definition a specialisation is generated from the function to the datatype. (This is possible because MFC-style definitions are not specific to a kind!)

Output A single file (.hs) containing Haskell 98 with extensions (we need rank-2 type signatures)
Implementation — continued

Step 2 All defined datatypes are translated into structural equivalent types constructed only out of binary sums and products from constant types, i.e. no constructor names, no field labels. Furthermore, we provide embedding functions from a “real” datatype to its structural equivalent type.

Step 3 The polyvalue definitions are translated line by line into ordinary Haskell functions.

Step 4 For every pair of a generic function and a datatype definition a specialisation is generated from the function to the datatype. (This is possible because MPO-style definitions are not specific to a kind!)

Output A single file (.hs) containing Haskell 98 with extensions (we need rank-2 type signatures)
Implementation — continued

Step 2 All defined datatypes are translated into structural equivalent types constructed only out of binary sums and products from constant types, i.e. no constructor names, no field labels. Furthermore, we provide embedding functions from a “real” datatype to its structural equivalent type.

Step 3 The polyvalue definitions are translated line by line into ordinary Haskell functions.

Step 4 For every pair of a generic function and a datatype definition a specialisation is generated from the function to the datatype. (This is possible because Mpc-style definitions are not specific to a kind!)

Output A single file (.hs) containing Haskell 98 with extensions (we need rank-2 type signatures)
Implementation — continued

Step 2 All defined datatypes are translated into structural equivalent types constructed only out of binary sums and products from constant types, i.e. no constructor names, no field labels.
Furthermore, we provide embedding functions from a “real” datatype to its structural equivalent type.

Step 3 The `polyvalue` definitions are translated line by line into ordinary Haskell functions.

Step 4 For every pair of a generic function and a datatype definition a specialisation is generated from the function to the datatype.
(This is possible because MPC-style definitions are not specific to a kind!)

Output A single file (.hs) containing Haskell 98 with extensions (we need rank-2 type signatures)
Example (Syntax demonstration)

We revisit the $encode$ function definition from the beginning:

\[
\begin{align*}
\text{Encode}\langle \kappa :: \Box \rangle &:: \kappa \to \star \\
\text{Encode}\langle \star \rangle t &= t \to [\text{Bit}] \\
\text{Encode}\langle \kappa_1 \to \kappa_2 \rangle t &= \forall a.\text{Encode}\langle \kappa_1 \rangle a \to \text{Encode}\langle \kappa_2 \rangle (t \ a) \\
\text{encode}\langle t :: \kappa \rangle &:: \text{Encode}\langle \kappa \rangle t \\
\text{encode}\langle 1 \rangle &= [] \\
\text{encode}\langle + \rangle eA eB (\text{inl } a) &= 0 : eA \ a \\
\text{encode}\langle + \rangle eA eB (\text{inr } b) &= 1 : eB \ b \\
\text{encode}\langle \times \rangle eA eB (a, b) &= eA \ a + eB \ b
\end{align*}
\]
This is how that transforms into the syntax of the prototype compiler:

\[
\text{polyvalue} \quad \text{encode} \quad \{| \ t \ |\} \quad : \quad t \rightarrow [\text{Bit}]
\]

\[
\text{encode}\{| \ 1 \ |\} \quad x \quad = \quad []
\]

\[
\text{encode}\{| \ + \ |\} \quad eA \ eB \ (\text{LEFT} \ xl) \quad = \quad 0 : \ (eA \ xl)
\]

\[
\text{encode}\{| \ + \ |\} \quad eA \ eB \ (\text{RIGHT} \ xr) \quad = \quad 1 : \ (eB \ xr)
\]

\[
\text{encode}\{| \ * \ |\} \quad eA \ eB \ (\text{PROD} \ x1 \ x2) \quad = \quad eA \ x1 \ ++ \ eB \ x2
\]
This is how that transforms into the syntax of the prototype compiler:

\[
\text{polyvalue \ encode \ \{ | \ t \ | \} :: t \rightarrow [\text{Bit}]} \\
\text{encode\{| 1 \|} x = [] \\
\text{encode\{| + \|} eA \ eB (\text{LEFT \ xl}) = 0 : (eA \ xl) \\
\text{encode\{| + \|} eA \ eB (\text{RIGHT \ xr}) = 1 : (eB \ xr) \\
\text{encode\{| * \|} eA \ eB (\text{PROD \ x1 \ x2}) = eA \ x1 ++ eB \ x2
\]

We provide the following datatypes:

\[
\text{data \ Bit} = 0 \mid 1 \\
\text{data \ List \ a} = \text{Nil} \mid \text{Cons \ a \ (List \ a)} \\
\text{data \ GRose \ c \ a} = \text{Node \ a \ (c \ (GRose \ c \ a))}
\]
Example (Call of compiler)

Now we can call the compiler on this file:

$ gh2hs --verbose EncodeTalk.ghs
Example (Call of compiler)

Now we can call the compiler on this file:

```
$ gh2hs --verbose EncodeTalk.ghs
Generic Haskell compiler, version 0.0.4
Options are: [Verbose]
Scanned.
Parsed.

File EncodeTalk.ghs read.
Kinds inferred.
Structure types generated.
Isomorphisms generated.
Iso-adapters for kind-~-datatypes generated.
Type-synonyms for polytypic values generated.
Iso-adapters generated.
Components generated.
Requirements analyzed.
Specializations generated.
$ _
```
The inferred kinds of the datatypes are written as a comment to the output file. The builtin list and pair types are added to the list.

```
-- Datatypes
_data Bit  = 0 | 1
_data List a = Nil | Cons a (List a)
_data GRose f a = Node a (f (GRose f a))
-- LIST :: (* -> *)
-- PAIR :: (* -> (* -> *))
-- Bit :: *
-- List :: (* -> *)
-- GRose :: (((* -> *) -> (* -> *)) -> (* -> *)))
```
These are the generated structural types. Note that the translations of the builtin list type and the user-defined one are identical.

```haskell
-- Structure types
type LIST__ a = SUM UNIT (PROD a (LIST a))
type PAIR__ a b = PROD a b
type Bit__ = SUM UNIT UNIT
type List__ a = SUM UNIT (PROD a (List a))
type GRose__ f a = PROD a (f (GRose f a))
```
Isomorphisms for mapping types to the structural types are generated. These are lifted to the type of generic functions.

```haskell
-- Type synonyms for polytypic values
type EncodeType t = t -> [Bit]

-- Iso-adapters for polyvalues
isoMapEncodeType :: Iso a1 a1__ -> Iso (EncodeType a1) (EncodeType a1__)
isoMapEncodeType isoMapt = ((isoMapFUN isoMapt) (isoMapLST isoMapBit))
```
The translation of the lines of the generic function definition is almost trivial.

```haskell
-- Components
encodeUNIT :: EncodeType UNIT
encodeUNIT x = []
encodeSUM :: EncodeType a1 -> EncodeType b1 -> EncodeType (SUM a1 b1)
encodeSUM eA eB (LEFT xl) = (O:(eA xl))
encodeSUM eA eB (RIGHT xr) = (I:(eB xr))
encodePROD :: EncodeType a1 -> EncodeType b1 -> EncodeType (PROD a1 b1)
encodePROD eA eB (PROD x1 x2) = ((eA x1)++(eB x2))
```
Finally, we get a look at the specialised functions for Bit, $List$ and $GRose$.

```
encodeBit :: Bit -> [Bit]
encodeBit = ((osi (isoMapEncodeType isoBit)) encodeBit__)
encodeBit__ :: Bit__ -> [Bit]
encodeBit__ = ((encodeSUM encodeUNIT) encodeUNIT)

encodeList :: (a01 -> [Bit]) -> List a01 -> [Bit]
translateList encodea = ((osi (isoMapEncodeType isoList))
  (encodeList__ encodea))
encodeList__ :: (a01 -> [Bit]) -> List__ a01 -> [Bit]
encodeList__ encodea = ((encodeSUM encodeUNIT) encodeUNIT)

encodeGRose :: (forall a11 . (a11 -> [Bit]) -> a01 a11 -> [Bit])
  -> (a21 -> [Bit]) -> GRose a01 a21 -> [Bit]
encodeGRose encodef encodea = ((osi (isoMapEncodeType isoGRose))
  (encodeGRose__ encodef encodea))
encodeGRose__ :: (forall a11 . (a11 -> [Bit]) -> a01 a11 -> [Bit])
  -> (a21 -> [Bit]) -> GRose__ a01 a21 -> [Bit]
```

These functions allow for the encoding of specific types in a structured manner, utilizing the concepts of Bit, $List$, and $GRose$. Each function is designed to handle its specific type efficiently, providing a foundation for more complex encoding processes.
Example (Usage of generated code)

> encodeBit 0
0
> encodeBit I
I
> encodeList encodeBit $ I ‘Cons’ (I ‘Cons’ (O ‘Cons’ Nil))
IIII00
> let
 emptyO = Node O Nil; emptyI = Node I Nil
in
 encodeGRose encodeList encodeBit
 $ Node I (emptyI ‘Cons’ (emptyI ‘Cons’ (emptyO ‘Cons’ Nil)))
III0II0II00
> _
Example (Usage of generated code)

> encodeBit 0
0
> encodeBit I
I
> encodeList encodeBit $ I ‘Cons’ (I ‘Cons’ (O ‘Cons’ Nil))
IIII00
> let
 emptyO = Node O Nil; emptyI = Node I Nil
in
 encodeGRose encodeList encodeBit
 $ Node I (emptyI ‘Cons’ (emptyI ‘Cons’ (empty0 ‘Cons’ Nil)))
III01101000
> _

- Names of generated functions are built by extending the name of the function with the name of the type.
- Nothing (yet) is done to prevent name clashes.
Future goals (decreasing priority)

- Wipe out some small technical deficiencies
- Clean up code a bit, switch to Attribute Grammar system
- Extend the parser to parse more or less Haskell 98 plus generic programming extensions
- Provide fixed-kind instantiations of MPC-style generic definitions
- Allow for better control over the specialisation process
- Add typechecking
Some remaining deficiencies are no problems

Hinze already provides solutions in his thesis for

- mapping more-than-rank-2 type signatures to rank-2 type signatures
- allowing user-defined types in the signatures of generic functions
- providing access to constructor names and labels of fields
 (needed for a reimplementation of show)
Extending the parser

We need a better parser. It should parse most of Haskell 98 to make the prototype usable for Haskell users.

- **hsparser** by Sven Panne, Simon Marlow and Noel Winstanley is a happy-based parser for full Haskell 1.4 that could be adapted
- Write a parser ourselves, using **UU_Parsing** (and we could have a more suitable abstract syntax)
More genericity

Let's have a look at the MPC-style generic function \textit{count}:

\[
\begin{align*}
\text{Count} \langle \kappa :: □ \rangle & :: \kappa \rightarrow \star \\
\text{Count} \langle \star \rangle \ t & = \ t \rightarrow \text{Int} \\
\text{Count} \langle \kappa_1 \rightarrow \kappa_2 \rangle \ T & = \ \forall a. \text{Count} \langle \kappa_1 \rangle \ a \rightarrow \text{Count} \langle T \ B \rangle \ (t \ a) \\
\text{count} \langle t :: \kappa \rangle & :: \text{Count} \langle \kappa \rangle \ t \\
\text{count} \langle 1 \rangle & = \ [] \\
\text{count} \langle + \rangle \ cA \ cB \ (\text{inl} \ a) & = \ cA \ a \\
\text{count} \langle + \rangle \ cA \ cB \ (\text{inr} \ b) & = \ cB \ b \\
\text{count} \langle \times \rangle \ eA \ eB \ (a, b) & = \ cA \ a + cB \ b
\end{align*}
\]

We want to be able to write the (still generic) instances \textit{sum} and \textit{size} of \textit{count} for \(\star \rightarrow \star \)-kinded types:

\[
\begin{align*}
\text{sum} \langle f :: \star \rightarrow \star \rangle & :: f \ \text{Int} \rightarrow \text{Int} \\
\text{sum} \langle f \rangle & = \ \text{count} \langle f \rangle \ id \\
\text{size} \langle f :: \star \rightarrow \star \rangle & :: F \ A \rightarrow \text{Int} \\
\text{size} \langle f \rangle & = \ \text{count} \langle f \rangle \ (\text{const} \ 1)
\end{align*}
\]
Specialise the specialisation process

- Give the user special syntax to use the generic functions at a specific type everywhere (we need to parse more than one file)
- Specialisations to applied type constructors are also possible: write $\text{encode} \langle \langle \text{List} \text{ Int} \rangle \rangle$ rather than $\text{encode} \langle \langle \text{List} \rangle \rangle \text{encode} \langle \langle \text{Int} \rangle \rangle$
- Let the user leave out the type, but that requires . . .
Typechecking

- Possibilities have to be investigated
- Providing typechecking for full Haskell 98 will probably be a lot of work
Thank you for listening