Staged generics-sop
IFIP WG 2.1 meeting #79, Otterlo

Matthew Pickering, Andres Loh
2020-01-07

= Well-Typed

The Haskell Consultants

generics-sop

Sums and products

Sum :: (a -> Type) -> [a] -> Type
Product :: (a -> Type) -> [a] -> Type

= Well-Typed

Sums and products

Sum :: (a -> Type) -> [a] -> Type
Product :: (a -> Type) -> [a] -> Type

Sum fIxq, X0, X3l = fx1 +f xo +f x3

Product f [x1, X2, X3] &= f x4 X f X x f x3

= Well-Typed

Sums and products

Sum :: (a -> Type) -> [a] -> Type
Product :: (a -> Type) -> [a] -> Type

Sum fIxq, X0, X3l = fx1 +f xo +f x3

Product f [x1, X2, X3] &= f x4 X f X x f x3

Sum (Product f) ([xq, x21, [J, [x3, X4, x51)
~(Fxy X Fx)+ 14+ (Ffxgx fxgxfxs)

= Well-Typed

Example datatype

data Animal =
HoppingAnimal String Double
| WalkingAnimal String Int

= Well-Typed

Example datatype

data Animal =
HoppingAnimal String Double
| WalkingAnimal String Int

Sum (Product I) [[String, Double], [String, Int]]
~ (I String x I Double) + (I String x I Int)
~ (String X Double) 4+ (String x Int)

= Well-Typed

Example datatype

data Animal =
HoppingAnimal String Double
| WalkingAnimal String Int

Sum (Product I) [[String, Double], [String, Int]]
~ (I String x I Double) + (I String x I Int)
~ (String X Double) 4+ (String x Int)

Description Animal = [[String, Double], [String, Int]]

from :: Animal -> Sum (Product I) (Description Animal)
to :: Sum (Product I) (Description Animal) -> Animal

= Well-Typed

A class for representable types

class (All (All Top) (Description a)) => Generic a where
type Description a :: [[Typell

from :: a -> Sum (Product I) (Description a)
to :: Sum (Product I) (Description a) -> a

= Well-Typed

Operations on sums and products

Mmapsum .
All Top xs
= (Vx . fx->gx) -> Sum f xs -> Sum g XS

Mapproduct - -
All Top xs
= (V x . fx->gx) ->Product f xs -> Product g xs

= Well-Typed

Operations on sums and products

cmapsym :
All c xs
= (Vx.cx=>fx->gx)
-> Sum f xs => Sum g XS
CMapPproduct - -
All c xs

= (Vx .cx=>fx->gx)
-> Product f xs -> Product g xs
cmapsop
All (All c¢) xs
= (Vx.cx=>fx->gx)
-> Sum (Product f) xs -> Sum (Product g) xs

= Well-Typed

Operations on sums and products

CPUr€product - -
All c xs
= (Vx .cx="fx)
-> Product f xs

= Well-Typed

Operations on sums and products

collapsesyn :: All Top xs => Sum (K a) xs -> a

collapseproduct :: All Top xs => Product (K a) xs -> [a]

= Well-Typed

Operations on sums and products

zipWithproduct ::
All Top xs
= (Vx . fx->gx->hx)
-> Product f xs -> Product g xs -> Product h xs

= Well-Typed

Operations on sums and products

zipWithproduct ::
All Top xs
= (Vx . fx->gx->hx)
-> Product f xs -> Product g xs -> Product h xs

zipWithgyp
All Top xs
= (Vx . fx->gx->hx)
-> Product f xs -> Sum g Xs -> Sum h xs

= Well-Typed

Operations on sums and products

aNaproduct - -
All Top xs

= (Vyys.s(y:ys) > (fy, sys))
-> s xs -> Product f xs

= Well-Typed

Arities of each constructor

constructorArities ::

Generic a => Product (K Word) (Description a)
constructorArities =

cpureproduct @(ALl Top) go

where

go :: V xs . ALl Top xs => K Word xs
go = K (fromIntegral (lengths ist @xs))

= Well-Typed

Arities of each constructor

constructorArities ::

Generic a => Product (K Word) (Description a)
constructorArities =

cpureproduct @(ALl Top) go

where

go :: V xs . ALl Top xs => K Word xs
go = K (fromIntegral (lengthg ist @xs))

Example:

data Animal =
HoppingAnimal String Double
| WalkingAnimal String Int

constructorArities @Animal
=K 2 :x K2 :% Nil

= Well-Typed

Numbering each constructor

constructorNumbers ::
Generic a => Product (K Word) (Description a)
constructorNumbers =
aNaproduct
AN Ei) > Ei, K+ 1))
(K 0)

= Well-Typed

Numbering each constructor

constructorNumbers ::
Generic a => Product (K Word) (Description a)
constructorNumbers =
aNaproduct
AN Ei) > Ei, K+ 1))
(K 0)
Example:

data Animal =
HoppingAnimal String Double
| WalkingAnimal String Int

constructorNumbers @Animal
=K@ :x K1 :%x Nil

= Well-Typed

Encoding, generically

gencode ::
V a . (Generic a, All (All Serialise) (Description a))
=> a -> Encoding
gencode X =
collapsesyy
(czipWith3s,, @(All Top)
(\ (K a) (Ki) encs —>
K (encodelListLen (a + 1)
<> encodeWord i
<> mconcat (collapseproduct €NCS)
)
)
(constructorArities @a)
(constructorNumbers @a)

(cmapsep @Serialise (\ (I y) -> K (encode y)) (from x))

= Well-Typed

Staging using Typed Template Haskell

Quotes and splices

type Code a = Q (TExp a)
newtype Code' a = Code {unCode :: Code a}

= Well-Typed

Quotes and splices

type Code a = Q (TExp a)
newtype Code' a = Code {unCode :: Code a}

exq :: Code Int
exy = [l 1 +2+3[]]

= Well-Typed

Quotes and splices

type Code a = Q (TExp a)
newtype Code' a = Code {unCode :: Code a}

exq :: Code Int
i 1+2+3 11

exi

exy :: Code Int
LIl $$exq * $%exq |11

eXy

AST: (1 +2+3) x (1 +2+3)

= Well-Typed

f :: Int -> Code Int
fx="U[] x+x |11

exz :: Code Int
exs = [|] $$(F (1 + 2+ 3)) |11

AST: 6 + 6

= Well-Typed

f :: Int -> Code Int
fx =1L x+x]]]

exz :: Code Int
exs = [|] $$(F (1 + 2+ 3)) |11

AST: 6 + 6

g :: Lift a => [a] -> Code [a]
g xs = [|| reverse xs |]1]

exg :: Code [Int]
exq = L[| $$(g (replicate 3 1)) |11

AST: reverse [1, 1, 1]

= Well-Typed

Using variables before they are defined

f :: Int -> Code Int
fx=0Ix+x11]]

exs :: Code (Int -> Int)
exs = [I1 \ x => $$(f x) |1 --notok

Stage error: ' X 'is bound at stage 2 but used at stage 1

= Well-Typed

Using variables before they are defined

f :: Int -> Code Int
fx=0Ix+x11]]

exs :: Code (Int -> Int)

exs = [l \ x => $$(f x) ||1 - notok

Stage error: ' X 'is bound at stage 2 but used at stage 1

But this is ok:
h :: Code Int -> Code Int
hx=TL]] $$x + $$x |]1]

exg :: Code (Int -> Int)
exe = LIl \x => $$Ch LIl x [1D) |11

AST: \ X => x + X

= Well-Typed

Hello world of staging

square :: Int -> Int
square X = X * X

= Well-Typed

Hello world of staging

square :: Int -> Int
square X = X * X

power :: Int -> Int -> Int

power n X
|n:: =1
| even n = square (power (n ‘div' 2) x)

| otherwise = x * power (n - 1) X

= Well-Typed

Hello world of staging

square :: Int -> Int
square X = X * X

power :: Int -> Int -> Int

power n X
| n==
| even n
| otherwise

=1
= square (power (n ‘div' 2) x)
= x * power (n - 1) x

spower :: Int -> Code Int -> Code Int

spower n x
| n ==
| even n
| otherwise

=L 1111
= [|] square $$(spower (n ‘div*' 2) x) ||1]
= []] $$x * $$(spower (n - 1) x) |11

= Well-Typed

Staging generics-sop

Structure is statically known, so rather than
Sum (Product I) (Description a)

let us use
Sum (Product Code') (Description a)

= Well-Typed

Staged conversions

class Generic a => SGeneric a where

sfrom ::
Code a
=> (Sum (Product Code') (Description a) -> Code r)
-> Code r

sto o
Sum (Product Code') (Description a)
-> Code a

= Well-Typed

The function sfrom introduces case analysis and passes the
representation to the continuation:
instance SGeneric Animal where

sfrom x k =
Cl1
case $$x of
HoppingAnimal n d ->
$$(k (Z (Code LIl n I11:* Code LI d |11:x Nil)))
WalkingAnimal n i ->
$$(k (S (Z (Code LIl n [13:% Code LIl i [13:% Nil))))
11

stox = ...

= Well-Typed

Staged generic encode

gencode ::
V a . (Generic a, All (All Serialise) (Description a))
=> a -> Encoding
gencode X =
collapsesyy
(czipWith3s,, @(All Top)
(\ (K a) (Ki) encs —>
K (encodelListLen (a + 1)
<> encodeWord i
<> mconcat (collapseproduct €NCS)
)
)
(constructorArities @a)
(constructorNumbers @a)

(cmapsep @Serialise (\ (I y) -> K (encode y)) (from x))

= Well-Typed

Staged generic encode

sgencode ::

V a . (SGeneric a, A1l (All Serialise) (Description a))
=> Code (a -> Encoding)

sgencode =
CIl \x -> $$(sfrom [|] x [T $ \x" —>
collapsesyy

(czipWith3gs,, @(ALl Top)
(N (Ka) (Ki) encs -> let a' =a + 1 in
K [Il encodeListLen a’
<> encodeWord i
<> $$(smconcat (collapseproguct €NCS))
11
)
(constructorArities @a)
(constructorNumbers @a)
(cmapsep @Serialise
(\ (Code y) => K [I| encode $$y |[1) x")

) 111
= Well-Typed

Missing function

smconcat :: Monoid a => [Code a] -> Code a
smconcat [] LIl mempty |11

smconcat [x] X

smconcat (x : xs) = []] $$x <> $$(smconcat xs) ||1]

= Well-Typed

Status

What (also) works

Implementing other staged generic functions:

» Deriving lenses (getters and setters).
» Generic equality and comparison.

> ...

= Well-Typed

Current limitations

data IntList = IntCons Int IntList | IntNil

instance Serialise IntList where
encode = $$(sgencode @IntList)

GHC stage restriction: instance for* Serialise IntList 'isusedina
top-level splice [...] and must be imported, not defined locally

= Well-Typed

Current limitations

data IntList = IntCons Int IntList | IntNil
instance Serialise IntList where
encode = $$(sgencode @IntList)

GHC stage restriction: instance for* Serialise IntList 'isusedina
top-level splice [...] and must be imported, not defined locally

data Option a = None | Some a

instance Serialise (Option a) where
encode = $$(sgencode @(Option a))

'

No instance for (Serialise a) arising from a use of ' sgencode

= Well-Typed

Open questions

Are the conversion functions sfrom and sto sufficient?

E.g. quadratic code size for generic equality.

= Well-Typed

Open questions

Are the conversion functions sfrom and sto sufficient?
E.g. quadratic code size for generic equality.

Can we transfer all the other known techniques from staging SYB
(Yallop)?

= Well-Typed

