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Sums and products

Sum :: (a -> Type) -> [a] -> Type
Product :: (a -> Type) -> [a] -> Type

Sum f [x1, x2, x3] ≈ f x1 + f x2 + f x3

Product f [x1, x2, x3] ≈ f x1 × f x2 × f x3

Sum (Product f) ([x1, x2], [], [x3, x4, x5])
≈ (f x1 × f x2) + 1 + (f x3 × f x4 × f x5)

Well-Typed
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Example datatype

data Animal =
HoppingAnimal String Double

| WalkingAnimal String Int

Sum (Product I) [[String, Double], [String, Int]]
≈ (I String × I Double) + (I String × I Int)
≈ (String × Double) + (String × Int)

Description Animal = [[String, Double], [String, Int]]

from :: Animal -> Sum (Product I) (Description Animal)
to :: Sum (Product I) (Description Animal) -> Animal

Well-Typed
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A class for representable types

class (All (All Top) (Description a)) => Generic a where
type Description a :: [[Type]]

from :: a -> Sum (Product I) (Description a)
to :: Sum (Product I) (Description a) -> a

Well-Typed



Operations on sums and products

mapSum ::
All Top xs

=> (∀ x . f x -> g x) -> Sum f xs -> Sum g xs

mapProduct ::
All Top xs

=> (∀ x . f x -> g x) -> Product f xs -> Product g xs

Well-Typed



Operations on sums and products

cmapSum ::
All c xs

=> (∀ x . c x => f x -> g x)
-> Sum f xs -> Sum g xs

cmapProduct ::
All c xs

=> (∀ x . c x => f x -> g x)
-> Product f xs -> Product g xs

cmapSoP ::
All (All c) xs

=> (∀ x . c x => f x -> g x)
-> Sum (Product f) xs -> Sum (Product g) xs

Well-Typed



Operations on sums and products

cpureProduct ::
All c xs
=> (∀ x . c x => f x)
-> Product f xs

Well-Typed



Operations on sums and products

collapseSum :: All Top xs => Sum (K a) xs -> a

collapseProduct :: All Top xs => Product (K a) xs -> [a]

Well-Typed



Operations on sums and products

zipWithProduct ::
All Top xs

=> (∀ x . f x -> g x -> h x)
-> Product f xs -> Product g xs -> Product h xs

zipWithSum ::
All Top xs

=> (∀ x . f x -> g x -> h x)
-> Product f xs -> Sum g xs -> Sum h xs

Well-Typed



Operations on sums and products

zipWithProduct ::
All Top xs

=> (∀ x . f x -> g x -> h x)
-> Product f xs -> Product g xs -> Product h xs
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=> (∀ x . f x -> g x -> h x)
-> Product f xs -> Sum g xs -> Sum h xs

Well-Typed



Operations on sums and products

anaProduct ::
All Top xs

=> (∀ y ys . s (y : ys) -> (f y, s ys))
-> s xs -> Product f xs

Well-Typed



Arities of each constructor

constructorArities ::
Generic a => Product (K Word) (Description a)

constructorArities =
cpureProduct @(All Top) go
where
go :: ∀ xs . All Top xs => K Word xs
go = K (fromIntegral (lengthSList @xs))

Example:

data Animal =
HoppingAnimal String Double

| WalkingAnimal String Int

constructorArities @Animal
= K 2 :* K 2 :* Nil

Well-Typed
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Numbering each constructor

constructorNumbers ::
Generic a => Product (K Word) (Description a)

constructorNumbers =
anaProduct
(\ (K i) -> (K i, K (i + 1)))
(K 0)

Example:

data Animal =
HoppingAnimal String Double

| WalkingAnimal String Int

constructorNumbers @Animal
= K 0 :* K 1 :* Nil

Well-Typed
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Encoding, generically

gencode ::
∀ a . (Generic a, All (All Serialise) (Description a))

=> a -> Encoding
gencode x =
collapseSum
(czipWith3Sum @(All Top)

(\ (K a) (K i) encs ->
K ( encodeListLen (a + 1)

<> encodeWord i
<> mconcat (collapseProduct encs)
)

)
(constructorArities @a)
(constructorNumbers @a)
(cmapSoP @Serialise (\ (I y) -> K (encode y)) (from x))

)

Well-Typed



Staging using Typed Template Haskell



Quotes and splices

type Code a = Q (TExp a)
newtype Code' a = Code {unCode :: Code a}

ex1 :: Code Int
ex1 = [|| 1 + 2 + 3 ||]

ex2 :: Code Int
ex2 = [|| $$ex1 * $$ex1 ||]

AST: (1 + 2 + 3) * (1 + 2 + 3)

Well-Typed
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Lifting

f :: Int -> Code Int
f x = [|| x + x ||]

ex3 :: Code Int
ex3 = [|| $$(f (1 + 2 + 3)) ||]

AST: 6 + 6

g :: Lift a => [a] -> Code [a]
g xs = [|| reverse xs ||]

ex4 :: Code [Int]
ex4 = [|| $$(g (replicate 3 1)) ||]

AST: reverse [1, 1, 1]

Well-Typed
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Using variables before they are defined

f :: Int -> Code Int
f x = [|| x + x ||]

ex5 :: Code (Int -> Int)
ex5 = [|| \ x -> $$(f x) ||] -- not ok

Stage error: ‘ x ’ is bound at stage 2 but used at stage 1

But this is ok:
h :: Code Int -> Code Int
h x = [|| $$x + $$x ||]

ex6 :: Code (Int -> Int)
ex6 = [|| \ x -> $$(h [|| x ||]) ||]

AST: \ x -> x + x

Well-Typed
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Hello world of staging

square :: Int -> Int
square x = x * x

power :: Int -> Int -> Int
power n x

| n == 0 = 1
| even n = square (power (n `div` 2) x)
| otherwise = x * power (n - 1) x

spower :: Int -> Code Int -> Code Int
spower n x

| n == 0 = [|| 1 ||]
| even n = [|| square $$(spower (n `div` 2) x) ||]
| otherwise = [|| $$x * $$(spower (n - 1) x) ||]

Well-Typed
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Staging generics-sop



Basic idea

Structure is statically known, so rather than

Sum (Product I) (Description a)

let us use
Sum (Product Code') (Description a)

Well-Typed



Staged conversions

class Generic a => SGeneric a where
sfrom ::

Code a
-> (Sum (Product Code') (Description a) -> Code r)
-> Code r

sto ::
Sum (Product Code') (Description a)

-> Code a

Well-Typed



Example

The function sfrom introduces case analysis and passes the
representation to the continuation:
instance SGeneric Animal where
sfrom x k =
[||
case $$x of
HoppingAnimal n d ->
$$(k (Z (Code [|| n ||]:* Code [|| d ||]:* Nil)))

WalkingAnimal n i ->
$$(k (S (Z (Code [|| n ||]:* Code [|| i ||]:* Nil))))

||]
sto x = ...

Well-Typed



Staged generic encode

gencode ::
∀ a . (Generic a, All (All Serialise) (Description a))

=> a -> Encoding
gencode x =
collapseSum
(czipWith3Sum @(All Top)

(\ (K a) (K i) encs ->
K ( encodeListLen (a + 1)

<> encodeWord i
<> mconcat (collapseProduct encs)
)

)
(constructorArities @a)
(constructorNumbers @a)
(cmapSoP @Serialise (\ (I y) -> K (encode y)) (from x))

)

Well-Typed



Staged generic encode
sgencode ::

∀ a . (SGeneric a, All (All Serialise) (Description a))
=> Code (a -> Encoding)

sgencode =
[|| \ x -> $$(sfrom [|| x ||] $ \ x' ->
collapseSum

(czipWith3Sum @(All Top)
(\ (K a) (K i) encs -> let a' = a + 1 in
K [|| encodeListLen a'

<> encodeWord i
<> $$(smconcat (collapseProduct encs))
||]

)
(constructorArities @a)
(constructorNumbers @a)
(cmapSoP @Serialise
(\ (Code y) -> K [|| encode $$y ||]) x')

)
) ||]

Well-Typed



Missing function

smconcat :: Monoid a => [Code a] -> Code a
smconcat [] = [|| mempty ||]
smconcat [x] = x
smconcat (x : xs) = [|| $$x <> $$(smconcat xs) ||]

Well-Typed



Status



What (also) works

Implementing other staged generic functions:

▶ Deriving lenses (getters and setters).
▶ Generic equality and comparison.
▶ . . .

Well-Typed



Current limitations

data IntList = IntCons Int IntList | IntNil

instance Serialise IntList where
encode = $$(sgencode @IntList)

GHC stage restriction: instance for ‘ Serialise IntList ’ is used in a
top-level splice [. . .] and must be imported, not defined locally

data Option a = None | Some a

instance Serialise (Option a) where
encode = $$(sgencode @(Option a))

No instance for (Serialise a) arising from a use of ‘ sgencode ’

Well-Typed
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Open questions

Are the conversion functions sfrom and sto sufficient?

E.g. quadratic code size for generic equality.

Can we transfer all the other known techniques from staging SYB
(Yallop)?

Well-Typed
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