
Staged generics-sop
IFIP WG 2.1 meeting #79, Otterlo

Matthew Pickering, Andres Löh
2020-01-07

Well-Typed
The Haskell Consultants

generics-sop

Sums and products

Sum :: (a -> Type) -> [a] -> Type
Product :: (a -> Type) -> [a] -> Type

Sum f [x1, x2, x3] ≈ f x1 + f x2 + f x3

Product f [x1, x2, x3] ≈ f x1 × f x2 × f x3

Sum (Product f) ([x1, x2], [], [x3, x4, x5])
≈ (f x1 × f x2) + 1 + (f x3 × f x4 × f x5)

Well-Typed

Sums and products

Sum :: (a -> Type) -> [a] -> Type
Product :: (a -> Type) -> [a] -> Type

Sum f [x1, x2, x3] ≈ f x1 + f x2 + f x3

Product f [x1, x2, x3] ≈ f x1 × f x2 × f x3

Sum (Product f) ([x1, x2], [], [x3, x4, x5])
≈ (f x1 × f x2) + 1 + (f x3 × f x4 × f x5)

Well-Typed

Sums and products

Sum :: (a -> Type) -> [a] -> Type
Product :: (a -> Type) -> [a] -> Type

Sum f [x1, x2, x3] ≈ f x1 + f x2 + f x3

Product f [x1, x2, x3] ≈ f x1 × f x2 × f x3

Sum (Product f) ([x1, x2], [], [x3, x4, x5])
≈ (f x1 × f x2) + 1 + (f x3 × f x4 × f x5)

Well-Typed

Example datatype

data Animal =
HoppingAnimal String Double

| WalkingAnimal String Int

Sum (Product I) [[String, Double], [String, Int]]
≈ (I String × I Double) + (I String × I Int)
≈ (String × Double) + (String × Int)

Description Animal = [[String, Double], [String, Int]]

from :: Animal -> Sum (Product I) (Description Animal)
to :: Sum (Product I) (Description Animal) -> Animal

Well-Typed

Example datatype

data Animal =
HoppingAnimal String Double

| WalkingAnimal String Int

Sum (Product I) [[String, Double], [String, Int]]
≈ (I String × I Double) + (I String × I Int)
≈ (String × Double) + (String × Int)

Description Animal = [[String, Double], [String, Int]]

from :: Animal -> Sum (Product I) (Description Animal)
to :: Sum (Product I) (Description Animal) -> Animal

Well-Typed

Example datatype

data Animal =
HoppingAnimal String Double

| WalkingAnimal String Int

Sum (Product I) [[String, Double], [String, Int]]
≈ (I String × I Double) + (I String × I Int)
≈ (String × Double) + (String × Int)

Description Animal = [[String, Double], [String, Int]]

from :: Animal -> Sum (Product I) (Description Animal)
to :: Sum (Product I) (Description Animal) -> Animal

Well-Typed

A class for representable types

class (All (All Top) (Description a)) => Generic a where
type Description a :: [[Type]]

from :: a -> Sum (Product I) (Description a)
to :: Sum (Product I) (Description a) -> a

Well-Typed

Operations on sums and products

mapSum ::
All Top xs

=> (∀ x . f x -> g x) -> Sum f xs -> Sum g xs

mapProduct ::
All Top xs

=> (∀ x . f x -> g x) -> Product f xs -> Product g xs

Well-Typed

Operations on sums and products

cmapSum ::
All c xs

=> (∀ x . c x => f x -> g x)
-> Sum f xs -> Sum g xs

cmapProduct ::
All c xs

=> (∀ x . c x => f x -> g x)
-> Product f xs -> Product g xs

cmapSoP ::
All (All c) xs

=> (∀ x . c x => f x -> g x)
-> Sum (Product f) xs -> Sum (Product g) xs

Well-Typed

Operations on sums and products

cpureProduct ::
All c xs
=> (∀ x . c x => f x)
-> Product f xs

Well-Typed

Operations on sums and products

collapseSum :: All Top xs => Sum (K a) xs -> a

collapseProduct :: All Top xs => Product (K a) xs -> [a]

Well-Typed

Operations on sums and products

zipWithProduct ::
All Top xs

=> (∀ x . f x -> g x -> h x)
-> Product f xs -> Product g xs -> Product h xs

zipWithSum ::
All Top xs

=> (∀ x . f x -> g x -> h x)
-> Product f xs -> Sum g xs -> Sum h xs

Well-Typed

Operations on sums and products

zipWithProduct ::
All Top xs

=> (∀ x . f x -> g x -> h x)
-> Product f xs -> Product g xs -> Product h xs

zipWithSum ::
All Top xs

=> (∀ x . f x -> g x -> h x)
-> Product f xs -> Sum g xs -> Sum h xs

Well-Typed

Operations on sums and products

anaProduct ::
All Top xs

=> (∀ y ys . s (y : ys) -> (f y, s ys))
-> s xs -> Product f xs

Well-Typed

Arities of each constructor

constructorArities ::
Generic a => Product (K Word) (Description a)

constructorArities =
cpureProduct @(All Top) go
where
go :: ∀ xs . All Top xs => K Word xs
go = K (fromIntegral (lengthSList @xs))

Example:

data Animal =
HoppingAnimal String Double

| WalkingAnimal String Int

constructorArities @Animal
= K 2 :* K 2 :* Nil

Well-Typed

Arities of each constructor

constructorArities ::
Generic a => Product (K Word) (Description a)

constructorArities =
cpureProduct @(All Top) go
where
go :: ∀ xs . All Top xs => K Word xs
go = K (fromIntegral (lengthSList @xs))

Example:

data Animal =
HoppingAnimal String Double

| WalkingAnimal String Int

constructorArities @Animal
= K 2 :* K 2 :* Nil

Well-Typed

Numbering each constructor

constructorNumbers ::
Generic a => Product (K Word) (Description a)

constructorNumbers =
anaProduct
(\ (K i) -> (K i, K (i + 1)))
(K 0)

Example:

data Animal =
HoppingAnimal String Double

| WalkingAnimal String Int

constructorNumbers @Animal
= K 0 :* K 1 :* Nil

Well-Typed

Numbering each constructor

constructorNumbers ::
Generic a => Product (K Word) (Description a)

constructorNumbers =
anaProduct
(\ (K i) -> (K i, K (i + 1)))
(K 0)

Example:

data Animal =
HoppingAnimal String Double

| WalkingAnimal String Int

constructorNumbers @Animal
= K 0 :* K 1 :* Nil

Well-Typed

Encoding, generically

gencode ::
∀ a . (Generic a, All (All Serialise) (Description a))

=> a -> Encoding
gencode x =
collapseSum
(czipWith3Sum @(All Top)

(\ (K a) (K i) encs ->
K (encodeListLen (a + 1)

<> encodeWord i
<> mconcat (collapseProduct encs)
)

)
(constructorArities @a)
(constructorNumbers @a)
(cmapSoP @Serialise (\ (I y) -> K (encode y)) (from x))

)

Well-Typed

Staging using Typed Template Haskell

Quotes and splices

type Code a = Q (TExp a)
newtype Code' a = Code {unCode :: Code a}

ex1 :: Code Int
ex1 = [|| 1 + 2 + 3 ||]

ex2 :: Code Int
ex2 = [|| $$ex1 * $$ex1 ||]

AST: (1 + 2 + 3) * (1 + 2 + 3)

Well-Typed

Quotes and splices

type Code a = Q (TExp a)
newtype Code' a = Code {unCode :: Code a}

ex1 :: Code Int
ex1 = [|| 1 + 2 + 3 ||]

ex2 :: Code Int
ex2 = [|| $$ex1 * $$ex1 ||]

AST: (1 + 2 + 3) * (1 + 2 + 3)

Well-Typed

Quotes and splices

type Code a = Q (TExp a)
newtype Code' a = Code {unCode :: Code a}

ex1 :: Code Int
ex1 = [|| 1 + 2 + 3 ||]

ex2 :: Code Int
ex2 = [|| $$ex1 * $$ex1 ||]

AST: (1 + 2 + 3) * (1 + 2 + 3)

Well-Typed

Lifting

f :: Int -> Code Int
f x = [|| x + x ||]

ex3 :: Code Int
ex3 = [|| $$(f (1 + 2 + 3)) ||]

AST: 6 + 6

g :: Lift a => [a] -> Code [a]
g xs = [|| reverse xs ||]

ex4 :: Code [Int]
ex4 = [|| $$(g (replicate 3 1)) ||]

AST: reverse [1, 1, 1]

Well-Typed

Lifting

f :: Int -> Code Int
f x = [|| x + x ||]

ex3 :: Code Int
ex3 = [|| $$(f (1 + 2 + 3)) ||]

AST: 6 + 6

g :: Lift a => [a] -> Code [a]
g xs = [|| reverse xs ||]

ex4 :: Code [Int]
ex4 = [|| $$(g (replicate 3 1)) ||]

AST: reverse [1, 1, 1]

Well-Typed

Using variables before they are defined

f :: Int -> Code Int
f x = [|| x + x ||]

ex5 :: Code (Int -> Int)
ex5 = [|| \ x -> $$(f x) ||] -- not ok

Stage error: ‘ x ’ is bound at stage 2 but used at stage 1

But this is ok:
h :: Code Int -> Code Int
h x = [|| $$x + $$x ||]

ex6 :: Code (Int -> Int)
ex6 = [|| \ x -> $$(h [|| x ||]) ||]

AST: \ x -> x + x

Well-Typed

Using variables before they are defined

f :: Int -> Code Int
f x = [|| x + x ||]

ex5 :: Code (Int -> Int)
ex5 = [|| \ x -> $$(f x) ||] -- not ok

Stage error: ‘ x ’ is bound at stage 2 but used at stage 1

But this is ok:
h :: Code Int -> Code Int
h x = [|| $$x + $$x ||]

ex6 :: Code (Int -> Int)
ex6 = [|| \ x -> $$(h [|| x ||]) ||]

AST: \ x -> x + x

Well-Typed

Hello world of staging

square :: Int -> Int
square x = x * x

power :: Int -> Int -> Int
power n x

| n == 0 = 1
| even n = square (power (n `div` 2) x)
| otherwise = x * power (n - 1) x

spower :: Int -> Code Int -> Code Int
spower n x

| n == 0 = [|| 1 ||]
| even n = [|| square $$(spower (n `div` 2) x) ||]
| otherwise = [|| $$x * $$(spower (n - 1) x) ||]

Well-Typed

Hello world of staging

square :: Int -> Int
square x = x * x

power :: Int -> Int -> Int
power n x

| n == 0 = 1
| even n = square (power (n `div` 2) x)
| otherwise = x * power (n - 1) x

spower :: Int -> Code Int -> Code Int
spower n x

| n == 0 = [|| 1 ||]
| even n = [|| square $$(spower (n `div` 2) x) ||]
| otherwise = [|| $$x * $$(spower (n - 1) x) ||]

Well-Typed

Hello world of staging

square :: Int -> Int
square x = x * x

power :: Int -> Int -> Int
power n x

| n == 0 = 1
| even n = square (power (n `div` 2) x)
| otherwise = x * power (n - 1) x

spower :: Int -> Code Int -> Code Int
spower n x

| n == 0 = [|| 1 ||]
| even n = [|| square $$(spower (n `div` 2) x) ||]
| otherwise = [|| $$x * $$(spower (n - 1) x) ||]

Well-Typed

Staging generics-sop

Basic idea

Structure is statically known, so rather than

Sum (Product I) (Description a)

let us use
Sum (Product Code') (Description a)

Well-Typed

Staged conversions

class Generic a => SGeneric a where
sfrom ::

Code a
-> (Sum (Product Code') (Description a) -> Code r)
-> Code r

sto ::
Sum (Product Code') (Description a)

-> Code a

Well-Typed

Example

The function sfrom introduces case analysis and passes the
representation to the continuation:
instance SGeneric Animal where
sfrom x k =
[||
case $$x of
HoppingAnimal n d ->
$$(k (Z (Code [|| n ||]:* Code [|| d ||]:* Nil)))

WalkingAnimal n i ->
$$(k (S (Z (Code [|| n ||]:* Code [|| i ||]:* Nil))))

||]
sto x = ...

Well-Typed

Staged generic encode

gencode ::
∀ a . (Generic a, All (All Serialise) (Description a))

=> a -> Encoding
gencode x =
collapseSum
(czipWith3Sum @(All Top)

(\ (K a) (K i) encs ->
K (encodeListLen (a + 1)

<> encodeWord i
<> mconcat (collapseProduct encs)
)

)
(constructorArities @a)
(constructorNumbers @a)
(cmapSoP @Serialise (\ (I y) -> K (encode y)) (from x))

)

Well-Typed

Staged generic encode
sgencode ::

∀ a . (SGeneric a, All (All Serialise) (Description a))
=> Code (a -> Encoding)

sgencode =
[|| \ x -> $$(sfrom [|| x ||] $ \ x' ->
collapseSum

(czipWith3Sum @(All Top)
(\ (K a) (K i) encs -> let a' = a + 1 in
K [|| encodeListLen a'

<> encodeWord i
<> $$(smconcat (collapseProduct encs))
||]

)
(constructorArities @a)
(constructorNumbers @a)
(cmapSoP @Serialise
(\ (Code y) -> K [|| encode $$y ||]) x')

)
) ||]

Well-Typed

Missing function

smconcat :: Monoid a => [Code a] -> Code a
smconcat [] = [|| mempty ||]
smconcat [x] = x
smconcat (x : xs) = [|| $$x <> $$(smconcat xs) ||]

Well-Typed

Status

What (also) works

Implementing other staged generic functions:

▶ Deriving lenses (getters and setters).
▶ Generic equality and comparison.
▶ . . .

Well-Typed

Current limitations

data IntList = IntCons Int IntList | IntNil

instance Serialise IntList where
encode = $$(sgencode @IntList)

GHC stage restriction: instance for ‘ Serialise IntList ’ is used in a
top-level splice [. . .] and must be imported, not defined locally

data Option a = None | Some a

instance Serialise (Option a) where
encode = $$(sgencode @(Option a))

No instance for (Serialise a) arising from a use of ‘ sgencode ’

Well-Typed

Current limitations

data IntList = IntCons Int IntList | IntNil

instance Serialise IntList where
encode = $$(sgencode @IntList)

GHC stage restriction: instance for ‘ Serialise IntList ’ is used in a
top-level splice [. . .] and must be imported, not defined locally

data Option a = None | Some a

instance Serialise (Option a) where
encode = $$(sgencode @(Option a))

No instance for (Serialise a) arising from a use of ‘ sgencode ’

Well-Typed

Open questions

Are the conversion functions sfrom and sto sufficient?

E.g. quadratic code size for generic equality.

Can we transfer all the other known techniques from staging SYB
(Yallop)?

Well-Typed

Open questions

Are the conversion functions sfrom and sto sufficient?

E.g. quadratic code size for generic equality.

Can we transfer all the other known techniques from staging SYB
(Yallop)?

Well-Typed

