
Evolving datatypes
Monadic Warsaw

Andres Löh

10 January 2017

.

.Well-Typed

.The Haskell Consultants



Motivation

Datatypes evolve.

Example:

.

.Well-Typed



Motivation

Datatypes evolve.

Example:

data User = User
{ login :: String
, fullname :: String
, location :: String
}

.

.Well-Typed



Motivation

Datatypes evolve.

Example:

data User = User
{ login :: String
, fullname :: String
}

.

.Well-Typed



Motivation

Datatypes evolve.

Example:

data User = User
{ login :: String
, fullname :: String
, languages :: String
}

.

.Well-Typed



Motivation

Datatypes evolve.

Example:

data User = User
{ login :: String
, fullname :: String
, languages :: [Language]
}

.

.Well-Typed



Why is it a problem?

Within the program itself, it usually is not.

But programs communicate, and produce external
representations of data:

I binary encodings,
I JSON,
I database entries,
I . . .

.

.Well-Typed



Different versions

External representations change . . .

First version:

{ "login" : "andres"
, "fullname" : "Andres Löh"
, "location" : "Regensburg"
}

“Current” version:

{ "login" : "andres"
, "fullname" : "Andres Löh"
, "languages" : ["Haskell", "Idris", "Agda"]
}

Program should be able to cope with both inputs.

.

.Well-Typed



Different versions

External representations change . . .

First version:

{ "login" : "andres"
, "fullname" : "Andres Löh"
, "location" : "Regensburg"
}

“Current” version:

{ "login" : "andres"
, "fullname" : "Andres Löh"
, "languages" : ["Haskell", "Idris", "Agda"]
}

Program should be able to cope with both inputs.

.

.Well-Typed



Different versions

External representations change . . .

First version:

{ "login" : "andres"
, "fullname" : "Andres Löh"
, "location" : "Regensburg"
}

“Current” version:

{ "login" : "andres"
, "fullname" : "Andres Löh"
, "languages" : ["Haskell", "Idris", "Agda"]
}

Program should be able to cope with both inputs.
.

.Well-Typed



[Some of the] Available Haskell options

safecopy

I Define all versions as separate Haskell datatypes.
I Define migration functions between the versions.
I Instantiate a class to get a versioned binary decoding.

api-tools

I Use a DSL to describe the changes between versions.
I Use Template Haskell to derive versioned decoders.

.

.Well-Typed



[Some of the] Available Haskell options

safecopy

I Define all versions as separate Haskell datatypes.
I Define migration functions between the versions.
I Instantiate a class to get a versioned binary decoding.

api-tools

I Use a DSL to describe the changes between versions.
I Use Template Haskell to derive versioned decoders.

.

.Well-Typed



Use datatype-generic programming



Idea of datatype-generic programming

I Datatypes are given a uniform, structural, representation.
I We can convert between the original datatype and its

representation.

I We can define functions based on the representation that
work on many different datatypes.

I Many different flavours of datatype-generic programming:
GHC generics, Scrap your Boilerplate, uniplate,
generics-sop, multirec, compdata, RepLib . . .

.

.Well-Typed



Idea of datatype-generic programming

I Datatypes are given a uniform, structural, representation.
I We can convert between the original datatype and its

representation.
I We can define functions based on the representation that

work on many different datatypes.

I Many different flavours of datatype-generic programming:
GHC generics, Scrap your Boilerplate, uniplate,
generics-sop, multirec, compdata, RepLib . . .

.

.Well-Typed



Idea of datatype-generic programming

I Datatypes are given a uniform, structural, representation.
I We can convert between the original datatype and its

representation.
I We can define functions based on the representation that

work on many different datatypes.
I Many different flavours of datatype-generic programming:

GHC generics, Scrap your Boilerplate, uniplate,
generics-sop, multirec, compdata, RepLib . . .

.

.Well-Typed



Idea of datatype-generic programming

I Datatypes are given a uniform, structural, representation.
I We can convert between the original datatype and its

representation.
I We can define functions based on the representation that

work on many different datatypes.
I Many different flavours of datatype-generic programming:

GHC generics, Scrap your Boilerplate, uniplate,
generics-sop, multirec, compdata, RepLib . . .

.

.Well-Typed



Representing types

data User = User
{ login :: Text
, fullname :: Text
, languages :: [Language]
}

type instance Code User = ’[’[Text, Text, [Language]]]

Rep (Code User) ~ SOP I (Code User)

type family Code (a :: Type) :: [[Type]]

class Generic a where
from :: a -> Rep (Code a)
to :: Rep (Code a) -> a

.

.Well-Typed



Representing types

data User = User
{ login :: Text
, fullname :: Text
, languages :: [Language]
}

type instance Code User = ’[’[Text, Text, [Language]]]

Rep (Code User) ~ SOP I (Code User)

type family Code (a :: Type) :: [[Type]]

class Generic a where
from :: a -> Rep (Code a)
to :: Rep (Code a) -> a

.

.Well-Typed



Representing types

data User = User
{ login :: Text
, fullname :: Text
, languages :: [Language]
}

type instance Code User = ’[’[Text, Text, [Language]]]

Rep (Code User) ~ SOP I (Code User)

type family Code (a :: Type) :: [[Type]]

class Generic a where
from :: a -> Rep (Code a)
to :: Rep (Code a) -> a

.

.Well-Typed



What is Rep ?

data User = User
{ login :: Text
, fullname :: Text
, languages :: [Language]
}

type instance Code User = ’[’[Text, Text, [Language]]]

Value of type User :

User "andres" "Andres Löh" [Haskell, Idris, Agda]

Value of type Rep (Code User) (modulo syntactic clutter):

C0 ["andres", "Andres Löh", [Haskell, Idris, Agda]]

.

.Well-Typed



What is Rep ?

data User = User
{ login :: Text
, fullname :: Text
, languages :: [Language]
}

type instance Code User = ’[’[Text, Text, [Language]]]

Value of type User :

User "andres" "Andres Löh" [Haskell, Idris, Agda]

Value of type Rep (Code User) (modulo syntactic clutter):

C0 ["andres", "Andres Löh", [Haskell, Idris, Agda]]
.

.Well-Typed



Sums of products

SOP I xss ≈ NS (NP I) xss

data NS (f :: k -> Type) (xs :: [k]) where
Z :: NS f (x ’: xs)
S :: NS f xs -> NS f (x ’: xs)

data NP (f :: k -> Type) (xs :: [k]) where
Nil :: NP f ’[]
(:*) :: f x -> NP f xs -> NP f (x ’: xs)

.

.Well-Typed



Generic functions

class Encode a where
encode :: a -> [Bit]
decoder :: Decoder a

Defined via induction on the representation:

gencode :: (Generic a, All2 Encode (Code a))
=> a -> [Bit]

gencode = ...

gdecoder :: (Generic a, All2 Encode (Code a))
=> Decoder a

gdecoder = ...

Yields defaults for the Encode class methods.

.

.Well-Typed



Generic functions

class Encode a where
encode :: a -> [Bit]
decoder :: Decoder a

Defined via induction on the representation:

gencode :: (Generic a, All2 Encode (Code a))
=> a -> [Bit]

gencode = ...

gdecoder :: (Generic a, All2 Encode (Code a))
=> Decoder a

gdecoder = ...

Yields defaults for the Encode class methods.

.

.Well-Typed



History of a datatype

User1

User2

User3

User4

.

.Well-Typed



History of a datatype

User1 Code User1

User2 Code User2

User3 Code User3

User4 Code User4

.

.Well-Typed



History of a datatype

User1 Code User1
Migration (Code (User1)) (Code (User2))

User2 Code User2
Migration (Code (User2)) (Code (User3))

User3 Code User3
Migration (Code (User3)) (Code (User4))

User4 Code User4

data Migration :: [[Type]] -> [[Type]] -> Type where
Migration :: (Rep a -> Rep b) -> Migration a b

.

.Well-Typed



History of a datatype

Code User1
Migration (Code (User1)) (Code (User2))

Code User2
Migration (Code (User2)) (Code (User3))

Code User3
Migration (Code (User3)) (Code (User4))

User Code User

data Migration :: [[Type]] -> [[Type]] -> Type where
Migration :: (Rep a -> Rep b) -> Migration a b

.

.Well-Typed



History of a datatype

Code User1
Migration (Code (User1)) (Code (User2))

Code User2
Migration (Code (User2)) (Code (User3))

Code User3
Migration (Code (User3)) (Code (User4))

User Code User

data Migration :: [[Type]] -> [[Type]] -> Type where
Migration :: (Rep a -> Rep b) -> Migration a b

data History :: Version -> [[Type]] -> Type where
Initial :: History v c
Revision :: (...)

=> Migration c’ c
-> History v’ c’
-> History v c

.

.Well-Typed



Simple migration

addConstructor :: Migration c (’[] ’: c)
addConstructor = Migration shift

Good, but not quite satisfactory:

I By position rather than name.
I No way to actually give a name to a revision.

.

.Well-Typed



Simple migration

addConstructor :: Migration c (’[] ’: c)
addConstructor = Migration shift

Good, but not quite satisfactory:

I By position rather than name.
I No way to actually give a name to a revision.

.

.Well-Typed



Include names in codes

data User = User {login :: String, fullname :: String}

Plain code:

type family Code (a :: Type) :: [[Type]]
type instance Code User =
’[’[String, String]]

Code with metadata:

type MetaCode = [(Symbol, [(Symbol, Type)])]
type family Code’ (a :: Type) :: MetaCode
type instance Code’ User =
’[’("User", ’[’("login", String), ’("fullname", String)])]

Stripping metadata:

type family Simplify (c :: MetaCode) :: [[Type]]

.

.Well-Typed



Include names in codes

data User = User {login :: String, fullname :: String}

Plain code:

type family Code (a :: Type) :: [[Type]]
type instance Code User =
’[’[String, String]]

Code with metadata:

type MetaCode = [(Symbol, [(Symbol, Type)])]
type family Code’ (a :: Type) :: MetaCode
type instance Code’ User =
’[’("User", ’[’("login", String), ’("fullname", String)])]

Stripping metadata:

type family Simplify (c :: MetaCode) :: [[Type]]

.

.Well-Typed



Migrations based on codes with metadata

data Migration :: MetaCode
-> MetaCode
-> Type where

Migration :: (Rep (Simplify a) -> Rep (Simplify b))
-> Migration a b

addField :: (...)
=> Proxy (v :: Version)
-> Proxy (d :: Symbol) -- name of constructor
-> Proxy (f :: Symbol) -- name of field
-> a -- default value
-> History v’ c
-> History v (AddField d f c)

.

.Well-Typed



Migrations based on codes with metadata

data Migration :: MetaCode
-> MetaCode
-> Type where

Migration :: (Rep (Simplify a) -> Rep (Simplify b))
-> Migration a b

addField :: (...)
=> Proxy (v :: Version)
-> Proxy (d :: Symbol) -- name of constructor
-> Proxy (f :: Symbol) -- name of field
-> a -- default value
-> History v’ c
-> History v (AddField d f c)

.

.Well-Typed



Example

personHistory :: History "4" (Code’ User)
personHistory =

changeType (Proxy @ "4")
(Proxy @ "User") (Proxy @ "languages")
parseLanguages

$ addField (Proxy @ "3")
(Proxy @ "User") (Proxy @ "languages")
"Haskell"

$ removeField (Proxy @ "2")
(Proxy @ "User") (Proxy @ "location")

$ initialRevision (Proxy @ "1")
(Proxy@InitialCodeUser)

.

.Well-Typed



Attaching histories to datatypes

class (Generic a, ...) => HasHistory a where
type CurrentRevision a :: Symbol
history :: Proxy a

-> History (CurrentRevision a) (Code’ a)

.

.Well-Typed



Encoding and decoding based on histories

hencode :: (HasHistory a, ...) => a -> [Bit]

I choose latest version from history
I encode version
I encode data generically

hdecode :: (HasHistory a, ...) => Decoder a

I decode version
I choose the corresponding version from history
I decode data generically for that version
I apply the remaining migration functions

.

.Well-Typed



Encoding and decoding based on histories

hencode :: (HasHistory a, ...) => a -> [Bit]

I choose latest version from history
I encode version
I encode data generically

hdecode :: (HasHistory a, ...) => Decoder a

I decode version
I choose the corresponding version from history
I decode data generically for that version
I apply the remaining migration functions

.

.Well-Typed



Annoyances

For hdecode ,

all types contained in all codes of all revisions

must be in the Encode class.

This means:

I put class constraints in History type,

I index History over all intermediate versions,

I abstract History over class constraints.

Also, versioning by datatype is actually not a good idea.

.

.Well-Typed



Annoyances

For hdecode ,

all types contained in all codes of all revisions

must be in the Encode class.

This means:

I put class constraints in History type,

I index History over all intermediate versions,

I abstract History over class constraints.

Also, versioning by datatype is actually not a good idea.

.

.Well-Typed



Annoyances

For hdecode ,

all types contained in all codes of all revisions

must be in the Encode class.

This means:

I put class constraints in History type,

I index History over all intermediate versions,

I abstract History over class constraints.

Also, versioning by datatype is actually not a good idea.

.

.Well-Typed



Conclusions

I Current code is proof of concept.
I New forms of migrations can be added.
I Not tied to a single encoding (i.e., different binary

encodings, JSON, database, could all work with the same
history).

I Comparatively much type safety.
I Also reverse migrations are possible.
I Efficiency?

.

.Well-Typed


