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Haskell
➙ Haskell is a statically typed language.
➙ Functions are defined by pattern matching.

factorial 0 = 1
factorial n = n · factorial (n− 1)

➙ Every function has a type that usually can be inferred by the
compiler.

factorial :: Int → Int

➙ Functions with multiple arguments are written in curried style.

and :: Bool → Bool → Bool
and True True = True
and = False
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User-defined datatypes

➙ Own datatypes can be defined in Haskell using the data
construct:

data Nat = Zero | Succ Nat

Succ (Succ (Succ Zero)) represents the number 3

➙ Functions are often defined recursively over the structure of a
datatype:

plus :: Nat → Nat → Nat
plus m Zero = m
plus m (Succ n) = Succ (plus m n)



Why Generic Haskell?

Among other things, there are two desireable goals for
programming languages:

➙ Abstraction
➙ Static guarantees



About abstraction

➙ Extract common patterns.
➙ Examples:

– Loops
– Modules
– Functions
– Classes
– Higher-order functions

➙ Advantages:
– Consistency
– Testing/correctness
– Reuse
– Conciseness



About static guarantees

➙ Syntactical correctness
➙ Scoping rules/unbound identifiers
➙ Static typing
➙ Advantages:

– Efficiency
– Safety
– Higher quality of resulting product
– Testing



Static typing prevents abstraction

➙ It is impossible to analyze all interesting properties of a
program at compile time (halting problem).

➙ A safe type system is necessarily conservative. It rejects
programs that work, or prevents you to write programs you
want to write.

➙ In dynamically typed languages, this problem does not occur.
➙ Generic Haskell can therefore be seen as an attempt to provide

a stronger type system to allow more abstraction while
maintaining safety.
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Haskell datatypes
Haskell’s data construct is extremely flexible. Here are a few
example datatypes:

data TimeInfo = AM | PM | H24

data PackageDesc = PD String Author Version Date

data Package = P PackageDesc [Package ]

data Maybe α = Nothing | Just α

data Tree α = Leaf α | Node (Tree α) (Tree α)

data Perfect α = ZeroP α | SuccP (Perfect (α, α))

data Compose ϕ ψ α = Comp (ϕ (ψ α))

Nevertheless, datatypes have a common structure: parametrized
over a number of arguments, several constructors mark multiple
alternatives, each constructor has multiple fields, and there may be
recursion.
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Parametric polymorphism
Haskell allows to express functions that work uniformly on all
datatypes.

id :: ∀α.α → α
id x = x

swap :: ∀α β.(α, β) → (β, α)
swap (x, y) = (y, x)

head :: ∀α.[α ] → α
head (x : xs) = x

We can take the head of a list of Packages, or swap a tuple of two
Perfect trees.
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What about equality?

➙ We know intuitively what it means for two Packages to be
equal.

➙ We also know what it means for two Perfect trees, normal
Trees, Maybes or TimeInfos to be equal.

Can you give a parametrically polymorphic
definition for equality?

(≡) :: ∀α.α → α → Bool
x ≡ y = ???

No. It’s theoretically impossible.



Defining equality for specific datatypes

data TimeInfo = AM | PM | H24
(≡)TimeInfo :: TimeInfo → TimeInfo → Bool
AM ≡TimeInfo AM = True
PM ≡TimeInfo PM = True
H24 ≡TimeInfo H24 = True

≡TimeInfo = False
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Defining equality for specific datatypes

data TimeInfo = AM | PM | H24
(≡)TimeInfo :: TimeInfo → TimeInfo → Bool
AM ≡TimeInfo AM = True
PM ≡TimeInfo PM = True
H24 ≡TimeInfo H24 = True

≡TimeInfo = False

data PackageDesc = PD String Author Version Date

(≡)PackageDesc :: PackageDesc → PackageDesc → Bool

(PD name author version date) ≡PackageDesc (PD name′ author′ version′ date′)
= name ≡String name′

∧ author ≡Author author′

∧ version ≡Version version′

∧ date ≡Date date′

data Package = P PackageDesc [Package ]



Lifting equality to parametrized datatypes

data Maybe α = Nothing | Just α

(≡)Maybe :: ∀α.(α → α → Bool) → (Maybe α → Maybe α → Bool)
(≡)Maybe (≡)α Nothing Nothing = True
(≡)Maybe (≡)α (Just x) (Just x′) = x ≡α x′

(≡)Maybe (≡)α = False



Lifting equality to parametrized datatypes

data Maybe α = Nothing | Just α

(≡)Maybe :: ∀α.(α → α → Bool) → (Maybe α → Maybe α → Bool)
(≡)Maybe (≡)α Nothing Nothing = True
(≡)Maybe (≡)α (Just x) (Just x′) = x ≡α x′

(≡)Maybe (≡)α = False

data [α ] = [ ] | α : [α ]

(≡)[ ] :: ∀α.(α → α → Bool) → ([α ] → [α ] → Bool)
(≡)[ ] (≡)α [ ] [ ] = True
(≡)[ ] (≡)α (x : xs) (x′ : xs′) = x ≡α x′

∧ xs ≡[α ] xs′

where (≡)[α ] = (≡)[ ] (≡)α

(≡)[ ] (≡)α = False



Abstraction, application and recursion

data Package = P PackageDesc [Package ]

(≡)Package :: Package → Package → Bool

(P desc deps) ≡Package (P desc′ deps′) = desc ≡Package desc′

∧ deps ≡[α ] deps′

where (≡)[α ] = (≡)[ ] (≡)α

Abstraction, application and recursion in the datatypes reappear
in the definition of equality as abstraction, application and

recursion on the value level!
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Is this satisfactory?

➙ Although we can use an overloaded version of equality on
several datatypes now, we still had to define all the instance
ourselves.

➙ Even worse, once we want to use equality on more datatypes,
we have to define new instances.

➙ On the other hand, it seems pretty obvious by now how to
define equality for new datatypes:

– It depends on the structure of the datatypes.
– Both values must belong to the same alternative.
– All fields must be equal.
– Abstraction, application and recursion must be handled

in a natural way.

Generic programming makes the structure of datatypes available
for the definition of type-dependent/type-indexed functions!



Generic programming in context

Ad-hoc polymorphism ≈ overloading

Structural polymorphism ≈ genericity

Parametric polymorphism

Haskell as a builtin deriving construct to magically derive functions
such as (≡), but this is only possible for a fixed amount of functions!
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Three datatypes

How does Generic Haskell expose the structure of datatypes?

It “deconstructs” datatypes so that they appear to built of
a small set of relatively simple types.

data Unit = Unit
data Sum α β = Inl α | Inr β
data Prod α β = α × β

➙ A value of Unit type represents a constructor with no fields
(such as Nothing or the empty list).

➙ A Sum represents the choice between two alternatives.
➙ A Prod represents the sequence of two fields.



Generic functions

A function that is defined for the Unit, Sum, and Prod types is
“generic”.

➙ It works for all datatypes that do not contain primitive types.
➙ A primitive type is a datatype that can not be deconstructed

because its implementation is hidden or because it cannot be
defined by means of the Haskell data construct.

➙ Integers Int, characters Char, functions (→), and the IO monad
are examples of primitive types.

➙ A generic function can also handle types containing primitive
types, but then additional cases are needed for these primitive
types.



From logical to functional programs

class Eq α where
(≡)α :: α → α → Bool

instance Eq PackageDesc where
(≡)PackageDesc = (≡)PackageDesc

instance Eq Package where
(≡)Package = (≡)Package

instance Eq α ⇒ Eq [α ] where
(≡)[ ] = (≡)[ ] (≡)α

Let us change the view . . .



From logical to functional programs

class Eq α where
(≡)α :: α → α → Bool

instance Eq PackageDesc where
(≡)PackageDesc = (≡)PackageDesc

instance Eq Package where
(≡)Package = (≡)Package

instance Eq α ⇒ Eq [α ] where
(≡)[ ] = (≡)[ ] (≡)α

Let us change the view . . .

(≡) 〈PackageDesc〉 = (≡)PackageDesc

(≡) 〈Package〉 = (≡)Package

(≡) 〈[α ]〉 = (≡)[ ] ((≡) 〈α〉)

This type-indexed function expresses the same as the instances
above. Generic Haskell lets you define type-indexed functions.



Generic equality

(≡) 〈α〉 :: α → α → Bool
(≡) 〈Unit〉 Unit Unit = True
(≡) 〈Sum α β〉 (Inl x) (Inl x′) = (≡) 〈α〉 x x′

(≡) 〈Sum α β〉 (Inr y) (Inr y′) = (≡) 〈α〉 y y′

(≡) 〈Sum α β〉 = False
(≡) 〈Prod α β〉 (x× y) (x′ × y′) = (≡) 〈α〉 x x′ ∧ (≡) 〈β〉 y y′

(≡) 〈Int〉 x x′ = (≡)Int x x′

(≡) 〈Char〉 x x′ = (≡)Char x x′



Generic equality

(≡) 〈α〉 :: α → α → Bool
(≡) 〈Unit〉 Unit Unit = True
(≡) 〈Sum α β〉 (Inl x) (Inl x′) = (≡) 〈α〉 x x′

(≡) 〈Sum α β〉 (Inr y) (Inr y′) = (≡) 〈α〉 y y′

(≡) 〈Sum α β〉 = False
(≡) 〈Prod α β〉 (x× y) (x′ × y′) = (≡) 〈α〉 x x′ ∧ (≡) 〈β〉 y y′

(≡) 〈Int〉 x x′ = (≡)Int x x′

(≡) 〈Char〉 x x′ = (≡)Char x x′

Additional cases such as

(≡) 〈PackageDesc〉 = (≡)PackageDesc

(≡) 〈Package〉 = (≡)Package

(≡) 〈[α ]〉 = (≡)[ ] ((≡) 〈α〉)

are now superfluous. They are implied by the generic cases above.



Use of generic equality

The thus defined function can now be used on different datatypes.

data TimeInfo = AM | PM | H24
data Tree α = Leaf α | Node (Tree α) (Tree α)

(≡) 〈TimeInfo〉 AM H24  False
(≡) 〈TimeInfo〉 PM PM  True
(≡) 〈Tree Int〉 (Node (Node (Leaf 2) (Leaf 4))

(Node (Leaf 1) (Leaf 3)))
(Node (Node (Leaf 4) (Leaf 2))

(Node (Leaf 1) (Leaf 3)))
 False

What if we are only interested in the shape of the tree, not the
values?



Local redefinition

Generic Haskell allows to locally redefine the generic function:

let (≡) 〈τ〉 x x′ = True
in (≡) 〈Tree τ〉 (Node (Node (Leaf 2) (Leaf 4))

(Node (Leaf 1) (Leaf 3)))
(Node (Node (Leaf 4) (Leaf 2))

(Node (Leaf 1) (Leaf 3)))
 True

Here we have given a name (τ) to a position in the type and have
redefined the behaviour of (≡) for that position.



Generic abstraction

Generic Haskell allows to abstract common patterns of application
for generic functions into new generic functions:

shapeequal 〈ϕ〉 = let (≡) 〈τ〉 x x′ = True
in (≡) 〈ϕ τ〉

Now, shapeequal can be used for all type constructors, for instance for
lists:

shapeequal 〈[ ]〉 [1, 2, 3 ] [4, 5, 6, 7 ] False
shapeequal 〈[ ]〉 [1, 2, 3 ] [4, 5, 6 ]  True



Generic functions, specific behaviour

➙ Sometimes, the automatically derived variant of a function for
a specific datatype does not have the intended behaviour or is
unnecessarily inefficient.

➙ A local redefinition might help here, but there is a simpler way.
➙ One can simply define a specific case for this datatype that

overrides the generic definition.
➙ For instance, we could have defined the following specific case

for equality on Packages if we know that a package is already
uniquely defined in our application by its description:

data PackageDesc = PD String Author Version Date
data Package = P PackageDesc [Package ]

. . .
(≡) 〈Package〉 (P desc deps) (P desc′ deps′) = (≡) 〈PackageDesc〉 desc desc′



Advantages of generic functions

➙ A generic function is written once, and works for a large class
of datatypes.

➙ General algorithmic ideas that work for all datatypes can be
expressed.

➙ The generic function itself can be typechecked. If the generic
function is type correct, then so is every instance.
This is different from meta-programming or programming
with templates: although specific instances will be
typechecked, the template or meta-program itself never is.

➙ There are complex datatypes for which the generic function is
actually shorter and easier to write than the specific instance.
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Parsing and printing

Many forms of parsing and printing functions can be written
generically. A very simple example is a function to encode a value as
a list of Bits:

data Bit = O | I
encode 〈α〉 :: α → [Bit ]
encode 〈Unit〉 Unit = [ ]
encode 〈Sum α β〉 (Inl x) = O : encode 〈α〉 x
encode 〈Sum α β〉 (Inr y) = I : encode 〈β〉 y
encode 〈Prod α β〉 (x× y) = encode 〈α〉 x ++ encode 〈β〉 y
encode 〈Int〉 x = encodeInBits 32 x
encode 〈Char〉 x = encodeInBits 8 (ord x)

data Tree α = Leaf α | Node (Tree α) (Tree α)
data TimeInfo = AM | PM | H24

encode 〈TimeInfo〉 H24  [I, I ]
encode 〈Tree TimeInfo〉 (Node (Leaf AM) (Leaf PM)) [I, O, O, O, I, O ]



Another generic function

collect 〈α〉 :: ∀ρ.α → [ρ ]
collect 〈Unit〉 Unit = [ ]
collect 〈Sum α β〉 (Inl x) = collect 〈α〉 x
collect 〈Sum α β〉 (Inr y) = collect 〈β〉 y
collect 〈Prod α β〉 (x× y) = collect 〈α〉 x ++ collect 〈β〉 y
collect 〈Int〉 x = [ ]
collect 〈Char〉 x = [ ]



Another generic function

collect 〈α〉 :: ∀ρ.α → [ρ ]
collect 〈Unit〉 Unit = [ ]
collect 〈Sum α β〉 (Inl x) = collect 〈α〉 x
collect 〈Sum α β〉 (Inr y) = collect 〈β〉 y
collect 〈Prod α β〉 (x× y) = collect 〈α〉 x ++ collect 〈β〉 y
collect 〈Int〉 x = [ ]
collect 〈Char〉 x = [ ]

➙ Alone, this generic function is completely useless! It always
returns the empty list.

➙ The function collect is, however, a good basis for local
redefinition or extension.

➙ Collect all elements from a tree:

let collect 〈τ〉 x = [x ]
in collect 〈Tree τ〉 (Node (Leaf 1) (Leaf 2)

(Leaf 3) (Leaf 4)) [1, 2, 3, 4 ]



Traversals

➙ With functions such as collect as a base, so-called generic
traversals can be written.

➙ If the abstract syntax of a language is expressed as a system of
datatypes, generic functions can be used to perform operations
such as:

– determine free variables in a part of a program
– perform optimizations
– perform modifications



Traversal example

data Compiler = C Name [Package Maintainer ]
data Package a = P Name a [Feature ] [Package a ]
data Maintainer = M Name Affiliation

| Unmaintained
data Feature = F String
type Name = String
type Affiliation = String

Possible tasks:
➙ Check if something is maintained.
➙ Assign a new maintainer to a structure.
➙ Assign all unmaintained packages that implement generic

programming to me.



Summary of Generic Haskell

➙ Type-indexed functions can be defined that generically work
for all datatypes.

➙ With generic abstraction, local redefinition, and extension there
are several possibilities to build new functions from a library
of basic generic functions.

➙ Generic functions can interact, i.e. depend on one another. In
this talk we have mainly seen functions that are recursive.

➙ Datatypes can also be indexed by a type argument. Generic
Haskell supports those as well.

➙ Applications range from classic functions such as equality over
all kinds of printing, parsing, conversions, mappings, over
generic traversals, selectively modying large trees, to
operations on XML documents and the automatic derivation of
isomorphisms between different datatypes.



Implementation of Generic Haskell

➙ Generic Haskell can be obtained from
www.generic-haskell.org.

➙ It implements all the features presented in this talk, but with a
slightly different syntax. (Generic Haskell is still in
development and may change significantly between releases.)

➙ The Generic Haskell compiler translates generic functions into
ordinary Haskell functions via specialisation: instances for
concrete datatypes are computed and inserted at the
appropriate positions.

➙ Type checking is left to the Haskell compiler, but if the Haskell
file typechecks, all generic definitions are type correct.


