
Structuring effectful programs
BOB 2023

Andres Löh
2023-03-17

Well-Typed
The Haskell Consultants

This is a talk about abstraction

What are effects?

Aspects of your code . . .

▶ . . . that are awkward to express in a purely functional style.
▶ . . . you might want to abstract from.
▶ . . . you might want to interpret differently.
▶ . . . that are inherently side effects.

Well-Typed

More concretely / examples

▶ state (i.e., mutable variables)
▶ error handling, exceptions
▶ non-determinism
▶ logging
▶ concurrency
▶ randomness
▶ disk access
▶ database access
▶ networking
▶ . . .

Well-Typed

Effectful applications

Most applications need various effects.

We would like to control them:

▶ safety,
▶ flexibility,
▶ design.

Well-Typed

Monads and applicative functors

In Haskell, we generally usemonads (and related interfaces such as
(applicative) functors to model effects).

A computation of type M a represents a computation yielding values
of type a , but potentially encapsulating various effects.

pure :: a -> M a

embeds a “pure” value of type a into M a without making use of any
effects.

(>>=) :: M a -> (a -> M b) -> M b

sequences two effectful operations, where the second can depend on
the results of the first.

Well-Typed

Monads and applicative functors

In Haskell, we generally usemonads (and related interfaces such as
(applicative) functors to model effects).

A computation of type M a represents a computation yielding values
of type a , but potentially encapsulating various effects.

pure :: a -> M a

embeds a “pure” value of type a into M a without making use of any
effects.

(>>=) :: M a -> (a -> M b) -> M b

sequences two effectful operations, where the second can depend on
the results of the first.

Well-Typed

Monads and applicative functors

In Haskell, we generally usemonads (and related interfaces such as
(applicative) functors to model effects).

A computation of type M a represents a computation yielding values
of type a , but potentially encapsulating various effects.

pure :: a -> M a

embeds a “pure” value of type a into M a without making use of any
effects.

(>>=) :: M a -> (a -> M b) -> M b

sequences two effectful operations, where the second can depend on
the results of the first.

Well-Typed

Monad laws

To be intuitive, we want to capture some of the informal notions we
have about pure and (>>=) in laws:

pure x >>= k = k x
m >>= pure = m

(pure should really not use any effects.)

(m >>= k) >>= l = m >>= (\ x -> k x >>= l)

((>>=) should really sequence.)

Well-Typed

Monad laws

To be intuitive, we want to capture some of the informal notions we
have about pure and (>>=) in laws:

pure x >>= k = k x
m >>= pure = m

(pure should really not use any effects.)

(m >>= k) >>= l = m >>= (\ x -> k x >>= l)

((>>=) should really sequence.)

Well-Typed

Monad laws

To be intuitive, we want to capture some of the informal notions we
have about pure and (>>=) in laws:

pure x >>= k = k x
m >>= pure = m

(pure should really not use any effects.)

(m >>= k) >>= l = m >>= (\ x -> k x >>= l)

((>>=) should really sequence.)

Well-Typed

How to find the right monadic type?

Monolithic approach

We can design a specific type M that does everything we need.

But then:

▶ We have to define the instances by hand.
▶ Easy to make mistakes / extra work to be convinced that the laws

are satisfied.
▶ Encourages us not to make changes, or to be very imprecise.
▶ Inflexible if we want different implementations for different

settings (in particular testing / staging).

Well-Typed

Monolithic approach

We can design a specific type M that does everything we need.

But then:

▶ We have to define the instances by hand.
▶ Easy to make mistakes / extra work to be convinced that the laws

are satisfied.
▶ Encourages us not to make changes, or to be very imprecise.
▶ Inflexible if we want different implementations for different

settings (in particular testing / staging).

Well-Typed

Combining effects

We can construct a type M in some way out of a library of effects.

Two popular approaches for this are:

▶ monad transformers,
▶ (algebraic / extensible) effects.

Well-Typed

Examples

Effectful code using mtl / transformers

validate ::
Payload -> StateT Int (ExceptT ValidationError IO) ()

validate payload = do
let pid = payloadId payload
liftIO (putStrLn ("Validating " <> show pid))
case checkPayload payload of
Ok -> do
ctr <- get
put (ctr + payloadSize payload)

NotOk -> do
liftIO (putStrLn ("Ignoring payload " <> show pid))

FatalError ->
throwError (FatalValidationError ...)

mtl and transformers packages are originally by Andy Gill and Ross Paterson

Well-Typed

Effectful code using mtl / transformers

validate ::
Payload -> StateT Int (ExceptT ValidationError IO) ()

validate payload = do
let pid = payloadId payload
liftIO (putStrLn ("Validating " <> show pid))
case checkPayload payload of
Ok -> do
ctr <- get
put (ctr + payloadSize payload)

NotOk -> do
liftIO (putStrLn ("Ignoring payload " <> show pid))

FatalError ->
throwError (FatalValidationError ...)

mtl and transformers packages are originally by Andy Gill and Ross Paterson

Well-Typed

Effect interfaces

Transformer-based effects come with interfaces . . .

class MonadState s m where
get :: m s
put :: s -> m ()

class MonadError e m where
throwError :: e -> m a
catchError :: m a -> (e -> m a) -> m a

class MonadIO m where
liftIO :: IO a -> m a

. . . and suitable instances such that in

StateT Int (ExceptT ValidationError IO) . . .

we can use all these methods.

Well-Typed

Effect interfaces

Transformer-based effects come with interfaces . . .

class MonadState s m where
get :: m s
put :: s -> m ()

class MonadError e m where
throwError :: e -> m a
catchError :: m a -> (e -> m a) -> m a

class MonadIO m where
liftIO :: IO a -> m a

. . . and suitable instances such that in

StateT Int (ExceptT ValidationError IO) . . .

we can use all these methods.

Well-Typed

Effect interfaces

Transformer-based effects come with interfaces . . .

class MonadState s m where
get :: m s
put :: s -> m ()

class MonadError e m where
throwError :: e -> m a
catchError :: m a -> (e -> m a) -> m a

class MonadIO m where
liftIO :: IO a -> m a

. . . and suitable instances such that in

StateT Int (ExceptT ValidationError IO) . . .

we can use all these methods.

Well-Typed

Effect interfaces

Transformer-based effects come with interfaces . . .

class MonadState s m where
get :: m s
put :: s -> m ()

class MonadError e m where
throwError :: e -> m a
catchError :: m a -> (e -> m a) -> m a

class MonadIO m where
liftIO :: IO a -> m a

. . . and suitable instances such that in

StateT Int (ExceptT ValidationError IO) . . .

we can use all these methods.

Well-Typed

Effect interfaces

Transformer-based effects come with interfaces . . .

class MonadState s m where
get :: m s
put :: s -> m ()

class MonadError e m where
throwError :: e -> m a
catchError :: m a -> (e -> m a) -> m a

class MonadIO m where
liftIO :: IO a -> m a

. . . and suitable instances such that in

StateT Int (ExceptT ValidationError IO) . . .

we can use all these methods.
Well-Typed

Effectful code using mtl / transformers

validate ::
(MonadState Int m
, MonadError ValidationError m
, MonadIO m
) => Payload -> m ()

validate payload = do
... -- exactly as before

Well-Typed

Effectful code using effectful

validate ::
(State Int :> es
, Error ValidationError :> es
, IOE :> es
) => Payload -> Eff es ()

validate payload = do
... -- exactly as before

effectful package is by Andrzej Rybczak

Well-Typed

effectful

All of these versions are bad

. . . because of course we should abstract!

Let us revisit the code

validate payload = do
let pid = payloadId payload
liftIO (putStrLn ("Validating " <> show pid))
case checkPayload payload of
Ok -> do
ctr <- get
put (ctr + payloadSize payload)

NotOk -> do
liftIO (putStrLn ("Ignoring payload " <> show pid))

FatalError ->
throwError (FatalValidationError ...)

Well-Typed

Our use of state

validate payload = do
...
case checkPayload payload of
Ok -> do
ctr <- get
put (ctr + payloadSize payload)

...

Well-Typed

Our use of state

validate payload = do
...
case checkPayload payload of
Ok -> stepCounterBy (payloadSize payload)

...

stepCounterBy :: State Int :> es => Int -> Eff es ()
stepCounterBy i = do
ctr <- get
put (ctr + i)

Well-Typed

Our use of state

validate payload = do
...
case checkPayload payload of
Ok -> countPayload payload

...

stepCounterBy :: State Int :> es => Int -> Eff es ()
stepCounterBy i = do
ctr <- get
put (ctr + i)

countPayload :: State Int :> es => Payload -> Eff es ()
countPayload payload =
stepCounterBy (payloadSize payload)

Well-Typed

Our use of IO and exceptions

Similarly:

logMsg :: IOE :> es => String -> Eff es ()
logMsg msg = liftIO (putStrLn msg)
stop ::
Error ValidationError :> es
=> ValidationError -> Eff es a

stop err = throwError err

Well-Typed

An improved version

validate payload = do
let pid = payloadId payload
logMsg ("Validating " <> show pid)
case checkPayload payload of
Ok -> countPayload payload
NotOk -> logMsg ("Ignoring payload " <> show pid)
FatalError -> stop (FatalValidationError ...)

Well-Typed

This version is still bad

We have abstracted the terms, but not the types

The types are as before . . .

Transformers:
validate ::
(MonadState Int m
, MonadError ValidationError m
, MonadIO m
) => Payload -> m ()

Effects:
validate ::
(State Int :> es
, Error ValidationError :> es
, IOE :> es
) => Payload -> Eff es ()

Well-Typed

Low-level versus high-level effects

Libraries (by necessity) offer mostly low-level effects:

▶ They are the fundamental building blocks.
▶ They are most widely applicable.

. . . but they are also least informative!

Well-Typed

Low-level versus high-level effects

Libraries (by necessity) offer mostly low-level effects:

▶ They are the fundamental building blocks.
▶ They are most widely applicable.

. . . but they are also least informative!

Well-Typed

High-level effects

▶ If we need a counter, we should reflect that in the types (and not
use State).

▶ If we need a logger, we should reflect that in the types (and not
use IO).

▶ . . .

Well-Typed

High-level effects

▶ If we need a counter, we should reflect that in the types (and not
use State).

▶ If we need a logger, we should reflect that in the types (and not
use IO).

▶ . . .

class MonadCounter m where
stepCounterBy :: Int -> m ()

class MonadLogger m where
logMsg :: String -> m ()

Well-Typed

High-level effects

▶ If we need a counter, we should reflect that in the types (and not
use State).

▶ If we need a logger, we should reflect that in the types (and not
use IO).

▶ . . .

class MonadCounter m where
stepCounterBy :: Int -> m ()

class MonadLogger m where
logMsg :: String -> m ()

(These classes are also usable for an effects library, and/or you can define new
effects . . .)

Well-Typed

High-level effects

▶ If we need a counter, we should reflect that in the types (and not
use State).

▶ If we need a logger, we should reflect that in the types (and not
use IO).

▶ . . .

data Counter :: Effect where
StepCounterBy :: Int -> Counter m ()

type instance DispatchOf Counter = Dynamic
stepCounterBy :: Counter :> es => Int -> Eff es ()
stepCounterBy = send . StepCounterBy

Well-Typed

More meaningful effects

validate ::
(MonadCounter m
, MonadError ValidationError m
, MonadLogger m
) => Payload -> m ()

The use of low-level effects (such as State or IO) should generally
be an implementation detail.

We can go yet further to an application-specific effect . . .

Well-Typed

More meaningful effects

validate ::
MonadValidate m => . . . -> m . . .

The use of low-level effects (such as State or IO) should generally
be an implementation detail.

We can go yet further to an application-specific effect . . .

Well-Typed

Another design question

What is the better type for countPayload ?

countPayload :: MonadCounter m => Payload -> m ()
countPayload :: MonadValidate m => Payload -> m ()

The former is precise.

Well-Typed

Another design question

What is the better type for countPayload ?

countPayload :: MonadCounter m => Payload -> m ()
countPayload :: MonadValidate m => Payload -> m ()

The former is more precise.

Well-Typed

Another design question

What is the better type for countPayload ?

countPayload :: MonadCounter m => Payload -> m ()
countPayload :: MonadValidate m => Payload -> m ()

The former is too precise.

Well-Typed

The pitfalls of excessive bottom-up design

f1 :: MonadX1 m => m . . .
f2 :: MonadX2 m => m . . .
f3 :: MonadX3 m => m . . .
. . .

composition ::
(MonadX1 m
, MonadX2 m
, ...
, MonadX1000 m
) => m . . .

Well-Typed

The pitfalls of excessive bottom-up design

f1 :: MonadX1 m => m . . .
f2 :: MonadX2 m => m . . .
f3 :: MonadX3 m => m . . .
. . .

composition ::
(MonadX1 m
, MonadX2 m
, ...
, MonadX1000 m
) => m . . .

Well-Typed

The pitfalls of excessive bottom-up design

Being precise about effects, and propagating them bottom-up leads to:

▶ a temptation to grant functions all effects they (seem to) need,
▶ sometimes, difficulty in adding effects that would be useful,
▶ many different combinations of effects when combining code.

Often, effects interact, and their interpretations interact. It is easier to
reason about few sets of specific combinations.

Well-Typed

The pitfalls of excessive bottom-up design

Being precise about effects, and propagating them bottom-up leads to:

▶ a temptation to grant functions all effects they (seem to) need,
▶ sometimes, difficulty in adding effects that would be useful,
▶ many different combinations of effects when combining code.

Often, effects interact, and their interpretations interact. It is easier to
reason about few sets of specific combinations.

Well-Typed

Top-down design

▶ Think about what effects certain parts of your applications really
need, and also what effects they should not need (such as general
IO).

▶ Be (over-permissive) in allowing a function belonging to one
component all these effects, but be cautious in adding new ones.

▶ Keep testing (different implementations of effects in mind at all
stages).

Well-Typed

Conclusions

▶ Abstract! Do not let your choice of effects library leak too much.
Abstract both the implementation and the types.

▶ Use meaningful, application-oriented effects rather than overly
generic ones.

▶ Push effects down rather than letting them bubble up.
▶ Do not unnecessarily commit to one implementation. Keep

testing in mind.

Well-Typed

