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Abstract. The more expressive a type system, the more type infor-
mation has to be provided in a program. Having to provide a type is
sometimes a pain, but lacking expressivity is often even worse. There
is a continuous struggle between expressivity and (type-)verbosity. How-
ever, even very expressive type systems allow type inference for parts of a
program. Generic Haskell is an extension of Haskell that supports defin-
ing generic functions. Generic Haskell assumes that the type of a generic
function is explicitly specified. This is often no problem, but sometimes
it is rather painful to have to specify a type – in particular for generic
functions with many dependencies – and sometimes the specified type
can be generalized. In this paper, we identify three type inference prob-
lems specific to generic functions, and present (partial) solutions to each
of them.

1 Introduction

A generic function can be used on a large set of data types. Generic functions are
useful, amongst others, for implementing functions that have to be written over
and again for different data types. Examples are equality, reading and showing
functions, traversal functions over large structures, and programs on data types
that frequently change [12, 20].

There exist several approaches to generic programming [1, 15, 20, 9, 22, 11,
2]. Generic Haskell [9, 22, 21] is one of the more powerful (but also elaborate)
approaches to generic programming. It is an extension of Haskell with amongst
others type-indexed functions which have kind-indexed types, and type-indexed
data types which have kind-indexed kinds.

A generic function in Generic Haskell is defined by induction on the structure
of types. Generic Haskell translates a generic function into a number of compo-
nents. The application of a generic function is then translated into an application
of these components. During the translation process, the compiler makes use of
type information for generic functions. Until now, work on Generic Haskell has
assumed that this type information is provided explicitly by the programmer
and merely checked by the compiler.

In some cases, providing the type of a generic function can be quite a pain.
In other cases the provided type might be more specific than necessary. This



paper investigates which type information can be inferred instead of checked by
the compiler. We introduce three different type inference problems typical for
generic programming, and discuss (im)possibilities of type inference for these
problems. The question of how much type information can be inferred for lan-
guages with advanced type systems has received quite some attention in the last
decade: partial type-inference algorithms have been designed for System F [3],
the lambda calculus with arbitrary-rank polymorphism [18, 25], Cyclone [16],
intersection type systems [5], a system with generalized algebraic data types [27,
19, 24], to mention just a few. This paper investigates the same problem for a
typed generic programming language.

The main results of this paper are:
– We distinguish three different type-inference problems for generic functions.
– We discuss (im)possibilities of type inference for generic functions, and give

examples which show that complete type inference is impossible, and give
algorithms for type inference for restricted classes of generic functions. We
can infer the type of about half of the functions of Generic Haskell’s library,
and we argue why it is unlikely that the type of the other half of the library
can be inferred.

– We introduce a special kind of qualified types to infer generic types.

We use the core language of Generic Haskell to illustrate the ideas, and
Generic Haskell’s type system to explain type inference, but the results also apply
to similar approaches to generic programming, such as PolyP [15], derivable
type classes [14], and Clean’s generic-programming extension [1]. Furthermore,
we expect that the qualified-types approach we use might have applications in
other areas, but we have yet to investigate the relation between type inference
for generic functions and areas such as generalized algebraic data types and
intersection types.

Organization. This paper is organized as follows: in the next section, we in-
troduce Generic Haskell, with the focus on the types of type-indexed functions.
Then, in Section 3, we precisely formulate the three inference problems for “type
arguments”, “dependencies”, and “base types”, and describe how to solve the
first two of these. Section 4 is devoted to base-type inference. In Section 5 we
conclude and discuss related and future work.

2 Type-indexed functions and their types

A generic function can be used on a large set of data types. A generic function
is a type-indexed function that is defined on a collection of types that can be
used to represent the structure type of (almost) any data type. Since structure
types only appear in the translation of generic functions, and not in the type
system for Generic Haskell, we will use the term type-indexed function in the
rest of this paper.

This section introduces type-indexed functions and their types. It discusses
how the type of a type-indexed function is used in the translation of the type-
indexed function.
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2.1 Type-indexed functions

A type-indexed function consists of a family of function definitions, and each of
the function definitions contains a type pattern. An example is the definition of
equality:

eq 〈Int〉 x y = x = = y -- use built-in equality
eq 〈Bool〉 True True = True
eq 〈Bool〉 False False = True
eq 〈Bool〉 = False
eq 〈[α ]〉 xs ys
| eq 〈Int〉 (length xs) (length ys) = and (zipWith (eq 〈α〉) xs ys)
| otherwise = False

eq 〈(α, β)〉 (x1, x2) (y1, y2) = eq 〈α〉 x1 y1 ∧ eq 〈β〉 x2 y2

This function is defined on integers, booleans, lists, and pairs, and defines the
standard structural equality on these types. Function eq can be used on com-
binations of these three type constructors by supplying a type argument, for
instance, eq 〈([Bool],Bool)〉 can be used to test two pairs, each consisting of a
list of booleans and a single boolean, for equality.

In the definition of eq we have used several syntactic extensions of the core
language of Generic Haskell, which contains a typecase construct for defining
type-indexed functions. The core language is presented in Figure 1.

The expression language is standard, and includes variables, constructors,
applications, abstractions and let bindings. In addition to these constructs, we
have type application (i.e., the application of a type-indexed function to a type)
and definitions of type-indexed functions. A type is a type variable, a type con-
structor (decorated by its arity) or a type pattern variable (pattern variable for
short). For simplicity, we do not introduce kinds in the language, and assume
that all type variables have kind ?. It follows that we cannot handle parametrized
type patterns with higher-kinded pattern types. However, the results of this pa-
per can be applied in a straightforward way to a type system with kinds [23].

A type pattern is an application of a type constructor to (possibly zero) pat-
tern variables. We assume that type patterns are linear, so that no pattern vari-
able occurs more than once. A type argument is a pattern variable, or an appli-
cation of a type constructor to type arguments. A type environment Γ binds pos-
sibly type-indexed functions to type schemes. It may also introduce type pattern
variables explicitly (Γ, α) or in type-indexed function bindings (Γ, x 〈α〉 :: σ),
but only if not already bound in environment Γ . This condition appears in a
well-formedness judgement for environments, which has been omitted.

We write ∀ai . σ instead of the more verbose ∀a1 .∀a2 . . . . σ, for a type scheme
abstracting over a number of type variables, and similarly for other expressions
where multiple arguments are used. We use the standard definitions for function
ftv , which returns the free type variables, and a similar function fpv , which re-
turns the free pattern variables of a type. Function dpv , for defined pattern vari-
ables, returns the pattern variables explicitly introduced in an environment Γ .
In type rules we write A#B to express that sets A and B are disjoint; for a set
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of variables, we write {ai }. Generalization of types Gen(X ; t) is a shorthand for
∀ai . t such that {ai }#ftv (X ).

Expressions e ::= x | C | e1 e2 | λx → e | let x = e in e ′ | x 〈A〉
| let x 〈α〉 = typecase α of R in e ′

Arms R ::= ∅ | Ω → e,R

Types t , u ::= a, b, . . . | Tn (ti) | α, β, . . .

Type patterns Ω ::= Tn αi

Type arguments A ::= α | Tn Ai

Type schemes σ ::= t | ∀a . σ

Environments Γ ::= ∅ | Γ, x :: σ | Γ, x 〈α〉 :: σ | Γ, α

Fig. 1. Expression and type syntax for core Generic Haskell

2.2 Translation of type-indexed functions

The Generic Haskell compiler translates a type-indexed function by generating
a specialized function for each of the type patterns. For the Int and Bool cases,
this is trivial. For example, the component of equality on integers is

cp(eq , Int) x y = x = = y -- use built-in equality

The generation of components is interesting if applications of type-indexed
functions appear on the right-hand side. The component for lists is

cp(eq , [ ]) cp(eq , α) xs ys
| cp(eq , Int) (length xs) (length ys) = and (zipWith (cp(eq , α)) xs ys)
| otherwise = False

As can be observed, the applications of type-indexed functions are translated
into applications of components, but in addition, components of type-indexed
functions on variables of the type pattern appear as extra arguments of a compo-
nent. In this case, the component for equality on lists cp(eq , [ ]) takes an equality
function on the element type of the list cp(eq , α) as argument. This argument is
used on the right-hand side in the translation of the call eq 〈α〉, but not in the
translation of the call eq 〈Int〉, which has a constant type argument. However, we
would translate a call to eq 〈[Int]〉 as an application of components, supplying
cp(eq , Int) as the argument for cp(eq , [ ]).

The function eq has a dependency on eq , because the component cp(eq , α)
is required to define cp(eq , [ ]). A type-indexed function is usually recursive and
therefore depends on itself, but a function can call other type-indexed functions
as well, and thus have multiple dependencies [22, 21].
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2.3 Generic type signatures

In Generic Haskell, type signatures of type-indexed functions are called generic
type signatures. A generic type signature for a function f takes a special form,
containing enough information to both
– indicate that f is indeed a type-indexed function,
– allow the compiler to instantiate the type of f for any type application f 〈A〉

of the function f to some type argument A; in particular, the type of cp(f ,T )
can be derived from the type signature for any named type T .
To continue our running example, the generic type signature of eq is

eq 〈α〉︸︷︷︸
type arguments

:: (eq 〈α〉)︸ ︷︷ ︸
dependencies

⇒ α → α → Bool︸ ︷︷ ︸
base type

As indicated above, there are three important parts to the type signature:
– one or more type arguments, enclosed by 〈〉, indicate that eq is a type-indexed

function,
– there are dependencies if the function calls itself or other type-indexed func-

tions recursively,
– the base type gives the type of a variable component such as cp(eq , α).

From this type signature, the following kind-indexed type [10] can be generated:

kit(eq , ?) a = a → a → Bool
kit(eq , κ1 → κ2) a = ∀a ′ . kit(eq , κ1) a ′ → kit(eq , κ2) (a a ′)

With this kind-indexed type, we have that cp(eq ,T ) :: kit(eq , κ) T for each
type constructor T of kind κ. In particular, we get the following types for the
components of the eq function:

cp(eq , Int) :: Int → Int → Bool
cp(eq ,Bool) :: Bool → Bool → Bool
cp(eq , [ ]) :: ∀a . (a → a → Bool) → [a ] → [a ] → Bool
cp(eq , (, )) :: ∀a b . (a → a → Bool) → (b → b → Bool) →

(a, b) → (a, b) → Bool

In general, the situation is slightly more complex than for eq . The kind-
indexed type for eq takes a single type argument, and therefore the arity of eq
is 1. For some type-indexed functions the kind-indexed type takes more than one
type argument, examples are map (arity 2) and zipWith (arity 3). In Section 4
we argue that it is impossible to infer the arity of a type-indexed function, and
that type inference is only possible for a fixed arity. Since the majority of type-
indexed functions has arity 1, we will assume that type-indexed functions have
arity 1 in the rest of this paper.

2.4 A type system for core Generic Haskell

This section presents a type system for core Generic Haskell, or GH for short.
Since we are not going to use dependencies in the typing rules in the following
sections, rules for dependencies are omitted. The type checking rules for core
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x 〈α〉 :: σ ∈ Γ
fpv (A) ⊆ dpv (Γ )

Γ ` x 〈A〉 :: σ[A/α ]
(gapp)

Γ, x 〈α〉 :: t ′, dpv (Ωi) ` ei :: t ′[Ωi/α ]
{aj }#ftv (Γ ) Γ, x 〈α〉 :: ∀aj . t ′ ` e :: t

Γ ` let x 〈α〉 = typecase α of Ωi → ei in e :: t
(glet)

Fig. 2. Type checking rules for Generic Haskell

Generic Haskell are presented in Figure 2, in which judgements of the form
Γ ` e :: σ express that expression e has type σ in environment Γ . We only
present the non-standard rules; the rules for variables, λ-abstraction, application,
∀-introduction and ∀-elimination, and let are omitted.

The type application rule (gapp), adapted from [21], returns the specialized
type of a type-indexed function. The rule checks that all pattern variables oc-
curring in a type argument are defined.

The type-indexed let rule (glet) first checks that each arm types with the
base type specialized to the corresponding type pattern. The arms may use the
function recursively, be it in a non-polymorphic way. Then it uses the generalized
type to check the type of the expression e.

In his thesis [21], Löh shows how to translate type-indexed functions and
types to plain Haskell functions and types, and that type-correct programs in
Generic Haskell are translated to type-correct programs in Haskell.

3 Type inference problems

We can identify three type inference problems for type-indexed functions. Since
type-indexed functions cannot be defined in plain Haskell, these problems cannot
be formulated for Haskell.

The first type inference problem is about inferring type arguments. If we use
the type-indexed function eq on expressions x1 and x2 of type Bool, we have to
write eq 〈Bool〉 x1 x2. We would rather write eq x1 x2, and infer from the types
of eq , x1 and x2 that it is the instance of eq on Bool we mean.

Problem 1 (Type-argument inference). Given a type application f 〈A〉 of a type-
indexed function f to a type argument A, infer the type argument A. In other
words, use contextual information to determine A so that the programmer can
simply write f instead of f 〈A〉.

As explained in Section 2.2, function eq depends on itself. This information
has to be provided explicitly in the type of eq . This dependency can be inferred
from the arm for 〈[α ]〉 in its definition.

Problem 2 (Dependency inference). Given the definition of a type-indexed func-
tion and a partial type signature without dependencies, infer the dependencies
to complete the type signature.
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Finally, in some circumstances even the base type for type-indexed functions
can be inferred.

Problem 3 (Base-type inference). Given the definition of a type-indexed function
and a partial type signature without base type, infer the base type to complete
the type signature.

The first two problems are relatively easy to solve. Problem 1 can be reduced
to type inference for overloaded functions in Haskell. If a type-indexed function
f is applied to a constant type argument A, the problem of inferring the A is
equivalent to finding the correct instance of a class Cf which has f as a method
and one instance for each arm of the typecase. This reduction is described in
more detail in the technical report [23] accompanying this paper.

Problem 2 can be solved by scanning each type-indexed function’s body for
calls to other type-indexed functions. This induces direct dependencies between
type-indexed functions. Because the dependency relation has to be reflexive and
transitive [21], the reflexive transitive closure has to be computed. For functions
of arity 1, this technique completely solves the problem of dependency inference.
A more detailed discussion is again included in the technical report.

Problem 3 is by far the most difficult and most interesting of the three prob-
lems. Therefore, the rest of this paper is devoted to the problem of base-type
inference.

4 Base-type inference

Base-type inference amounts to computing a type t for a term e, such that under
an environment Γ , Γ ` e :: t , where ` is the typing relation for type-indexed
functions defined in Section 2.4.

We would like type-indexed functions to have principal types [7]. If type-
indexed functions have principal types, we can design a compositional type-
inference algorithm that gives the best possible type for an expression, and we
can use standard techniques to prove its correctness.

Unfortunately, there exist type-indexed functions that may be assigned two
incomparable types [21]. An example of such a function is the function which
equals the type-indexed identity function (gid) with one type and the type-
indexed map function (map) with the other type. The type of the type-indexed
map function cannot be used in all contexts where the type of the type-indexed
identity is used, and conversely. Since we cannot give the function a single type
that subsumes the two others, the Generic Haskell type system lacks the principal
types property.

A natural approach to this problem is to infer types only for a fragment
of the Generic Haskell type system. Based on the observation that the type-
indexed identity and map functions have different arities, we could restrict type
inference to infer types of type-indexed functions with a fixed arity, for example
the arity 1.
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Unfortunately, even in this restricted setting we can find functions with no
principal type. Consider the definition of fun

let fun 〈α〉 = typecase α of Bool → λx → not x
Int → λx → x

We can assign two different types to fun: fun 〈α〉 :: Bool → Bool and fun 〈α〉 ::
α → α. These types are not comparable, and there does not exist a type sub-
suming these two types in Generic Haskell’s type system.

We solve the problem by adding qualified types [17] to the Generic Haskell
type system. The above function’s type now becomes fun 〈α〉 :: ∀a .P(a) ⇒ a →
a. This type represents the two types above through appropriate instantiations
of type variable a such that they satisfy the predicate P .

Using qualified types we can assign a type to an expression that represents all
its possible types. We shall now introduce the predicates used in the extension
of the type system with qualified types.

4.1 Qualified types for type-indexed functions

Function fun lacks a principal type because the substitution in rule (glet), Fig-
ure 2, is a non-injective function from base types to arm types. It follows that
several incomparable base types may type the arm of a type-indexed function,
or even a type-indexed function.

Our type system represents all the types of a type-indexed function with
qualified types. Types are qualified with disjunctions of type equations called
choice predicates. For example, the type of function fun is: fun 〈α〉 :: ∀a . a =
α ∨ a = Bool ⇒ a → a. From it, we can derive the two types for fun using a
generic instance [7, 17] relation. Specifically, we substitute either α or Bool for
variable a; these are the only substitutions that satisfy the equations at either
side of the disjunction.

Each arm in the definition of a type-indexed function gives rise to a qualified
type. This process, which we call marking, may be seen as the inverse of (glet)
substitution: we obtain the base type from the arm type. More precisely, marking
obtains a qualified (base) type q from the arm type t replacing all occurrences of
the type index Ω by constrained type variables; formally we write markα

ΩΓ ; t ≡
q . A choice predicate constrains a type variable to be either a type argument (α)
or the original type. Figure 3 gives a specification for marking.

Marking and generalizing fun 〈Bool〉 :: Bool → Bool produces:

fun 〈α〉 :: ∀b c . (b = α ∨ b = Bool, c = α ∨ c = Bool) :: b → c

where every Bool in the original type is replaced by potentially different con-
strained variables. Indeed, this type scheme subsumes all 4 possible base types
including fun 〈α〉 :: α → α and fun 〈α〉 :: Bool → Bool.

Generalized marked types have the property that all generic instances, when
specialized to the type index, are also generic instances of the generalized type
of the arm. That is, for all σ such that markα

ΩΓ ; t ≡ q and σ 6 Gen(Γ ; q), we
have that σ[Ω/α ] 6 Gen(Γ ; t). It follows that all specialized instance types can
also type the arm.
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a /∈ Γ
markα

TΓ ;T ≡ a = α ∨ a = T ⇒ a
(mark-const)

a /∈ Γ
markα

TΓ ; b ≡ a = α ∧ b = T ∨ a = b ⇒ a
(mark-var)

markα
TΓ ; ti ≡ Pi ⇒ t ′i T 6= = T ′

markα
TΓ ;T ′ ti ≡ Pi ⇒ T ′ t ′i

(mark-app)

Fig. 3. Marking: Introduction of predicates

Marking a type variable deserves special attention. The resulting choice pred-
icate mentions the variable in an additional type equation; thus imposing a re-
striction when the type argument (left) choice is taken. The additional type
equation ensures that the property just stated above is enforced for variable
cases. To witness, we mark and generalize fun 〈Int〉 :: a → a:

fun 〈α〉 :: ∀b c a . (b = α ∧ a = Int ∨ b = a
, c = α ∧ a = Int ∨ c = a) ⇒ b → c

A generalized type without the additional equations would admit the generic in-
stance fun 〈α〉 :: ∀a . α → a. The instance type, specialized, breaks the property
fun 〈Int〉 :: ∀a . Int → a 6 fun 〈Int〉 :: ∀a . a → a, making it unsuitable to type
the Int arm of the function. The additional equations prevent this typing.

Base types for a type-indexed function should be generic instances of all
generalized marked types. Combining the generalized marked types for Bool
and Int for fun we thus get

fun 〈α〉 :: ∀b c a . (b = α ∨ b = Bool, c = α ∨ c = Bool
, b = α ∧ a = Int ∨ b = a, c = α ∧ a = Int ∨ c = a)
⇒ b → c

which represents the same set of types as fun 〈α〉 :: ∀a . a = α ∨ a = Bool ⇒
a → a. However, our type system cannot prove their equality. We provided the
latter type at the start of this section for readability.

A well-formedness condition, appearing in our type rules, requires that type
variables constrained by several predicates, such as b and c above, be constrained
by a single predicate. Hence, the type of fun changes to:

fun 〈α〉 :: ∀b c a . (b = α ∧ a = Int ∨ b = a ∧ b = Bool
, c = α ∧ a = Int ∨ c = a ∧ c = Bool) ⇒ b → c

ensuring a consistent choice for the constrained variables.
Otherwise, some untypable programs in the Generic Haskell type system

become typable in GQH. For instance, consider the following program

let f x =
let val 〈α〉 = typecase α of
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Int → x
Bool → True
Float → x

in val 〈Int〉
in plus (f 2) 2

The GH type system assigns the type Bool to val 〈α〉. It follows that x has type
Bool. The typing val 〈α〉 :: α is wrong because it makes one of the Int or Float
arms ill-typed, depending on the type of x .

Consider the situation when val type checks with the following type, assum-
ing that x has type b in the environment.

val 〈α〉 :: ∀a . (a = α ∧ b = Int ∨ a = b
, a = α ∨ a = Bool
, a = α ∧ b = Float ∨ a = b) ⇒ a

Substituting Int for α, this leads to the following type for f :

f :: ∀a b . (a = Int ∧ b = Int ∨ a = b
, a = Int ∨ a = Bool
, a = Int ∧ b = Float ∨ a = b) ⇒ a

The function f may be typed with the generic instance Int. However, f :: Int is
not valid in GH and hence GQH would not be sound with respect to the former.

That is why GQH ensures that the qualified type for f is as follows:

f :: a = Int ∧ b = Int ∧ b = Float ∨
a = b ∧ a = Bool ⇒ a

Making GQH sound with respect to GH.

Completeness and recursive type-indexed functions Most type-indexed
functions are recursive. Currently we do not know how to type recursive type-
indexed functions with qualified types. Therefore our type system types recursive
type-indexed functions with types that do not use predicates. As a result, some
recursive type-indexed functions do not have a principal type, since that type
might be qualified. In order to exploit the principal types property in the infer-
ence algorithm, it disallows recursive type-indexed functions that may type with
a qualified type. It follows that the type inference algorithm is not complete with
respect to the type system.

Fortunately, the omitted functions are extremely contrived. By not allowing
them we do not lose (to the best of our knowledge) useful type-indexed programs.

As an example, consider the following function:

f 〈α〉 = typecase α of
[β ] → const [⊥] f 〈β〉

This function can be typed with f 〈α〉 :: α and f 〈α〉 :: ∀a . [a ]. This function
does not have an unqualified principal type. Thus, it is not accepted by our
type inference algorithm. More specifically, it is rejected by a condition in rule
(w-gletrec) in Figure 8.
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Type schemes
σ ::= . . . | q
Type predicates
π ::= ε ∨ ε
ε ::= True | ε ∧ t1 = t2

Predicate sets
P ,Q ::= ∅ | P , π

Qualified types
q ::= P ⇒ t

Environment
Γ ::= . . . | Γ, x 〈α〉 :: ·
Generic instances environment
∆ ::= ∅ | ∆, x 〈A〉 ∼ t

Fig. 4. Syntax for Generic Haskell with Qualified types and terms. Extends Figure 1

4.2 Type system with qualified types

This section presents the extension of of Generic Haskell’s type system with
qualified types.

Syntax and notation Figure 4 shows the extensions to Generic Haskell’s type
language to incorporate qualified types.

A qualified type has predicates that constrain type variables. Predicates are
disjunctions of type equation conjunctions. For brevity we omit True when writ-
ing predicates. We regard conjunctions of type equations as sets: we assume no
duplicate equations and their ordering does not matter; the same holds for sets
of predicates. We write union of predicates with a comma P ,Q .

A type environment Γ may now also contain incomplete bindings x 〈α〉 :: ·,
which denote type-indexed functions with, as yet, unknown types. These bind-
ings are used to infer the types of recursive type-indexed functions. An incom-
plete binding introduces, but does not define, a pattern variable α; behavior that
is similar to type-indexed function bindings, discussed in Section 2.1.

The generic-instances environment (instances environment for short) ∆ as-
sociates applications of type-indexed functions to type arguments with their
inferred types. An instances environment is a set of such associations, we write
the union operation with a comma: ∆, ∆′. We write ∆x to express an instance
environment ∆ such that the instances for function x are removed. This envi-
ronment and incomplete bindings are only used in type inference.

A substitution S is a finite mapping from type variables to types. We write
Sa to denote the type corresponding to type variable a in the domain of S .
The result of applying substitution S to type scheme σ is the type scheme
obtained by replacing every free type variable in σ that is also in dom (S )
by the type Sa. We generalize substitution application to environments Γ and
instance environments ∆ by applying substitutions to type schemes occurring
in the environments. The extension of a substitution S for a type variable a is
written [a 7→ t ]S if a /∈ dom (S ).

A type scheme σ ≡ ∀ai .P ⇒ t , for bindings x 〈α〉 :: σ and x 〈α〉 :: σ′, has a
generic instance σ′ ≡ ∀bi .Q ⇒ t ′ if t ′ ≡ t [ti/ai ], Q 
 P [ti/ai ] for some types
ti such that variables bi do not occur free in σ. We write this relation σ′6Sσ
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where the substitution S is the witness of the generic instance: S ≡ [ai 7→ ti ].
We may also choose to omit the substitution: σ′ 6 σ.

Entail-TA : 
 True ∨ ε
Entail-NonTA : 
 ε ∨ True
I-TA : ε1 ∨ ε2 
 t = t ∧ ε1 ∨ ε2

I-NonTA : ε1 ∨ ε2 
 ε1 ∨ t = t ∧ ε2

E-TA : t1 = t2 ∧ ε1 ∨ ε2 
 ε1 ∨ ε2

E-NonTA : ε1 ∨ t1 = t2 ∧ ε2 
 ε1 ∨ ε2

Fig. 5. Entailment relation for predicates.

Type system Figure 6 shows the type checking rules for Generic Haskell with
qualified types, which we call GQH. The judgement P | Γ ` e :: σ assigns a type
scheme σ to an expression e under environment Γ when the predicates P are
satisfied.

The type inference rules, except for rule (glet) and rule (glet-rec), are the
standard qualified types rules[17].

Rule (glet) types non-recursive type-indexed functions. The type scheme of
the function should be a generic instance of all generalized marked types corre-
sponding to the arms. Two more conditions on the type scheme ensure that its
predicates are well-formed (`pred) and that occurrences of pattern variables are
defined.

Rule (glet-rec) uses a more general marking relation that handles parametrized
type patterns (Ω). The definition of the marking relation, in Figure 7, may in-
troduce a predicate in a non-deterministic way. While the simple definition of
Figure 3 introduces type variables, this definition constrains arbitrary types in
the introduced predicates. Note that we write ` markα

Ωt1 ≡ q2 for the marking
relation and markα

Ωt1 ≡ q2 for the algorithmic version. The algorithm differs
only in that the introduced predicates constrain fresh variables. Figure 9 shows
the introduction of predicates for algorithmic marking.

Rule (glet-rec) requires that the generic function types with an unqualified
type scheme σ. Note that the rule allows recursion and that the environment
is extended with the defined pattern variables of the type indices when typing
arms.

The appendix defines a translation of GQH programs into the GH language
to prove soundness.

Theorem 1 (Soundness of GQH). The translation of a well-typed GQH pro-
gram is a well-typed GH program.
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x :: σ ∈ Γ
P | Γ ` x :: σ

(var)
x 〈α〉 :: σ ∈ Γ fdv (A) ⊆ dpv (Γ )

P | Γ ` x 〈A〉 :: σ[A/α ]
(gapp)

P | Γ, x :: t ′ ` e :: t fpv (t ′) ⊆ dpv (Γ )
P | Γ ` λx → e :: t ′ → t

(→I)

P | Γ ` e1 :: t ′ → t P | Γ ` e2 :: t ′

P | Γ ` e1 e2 :: t
(→E)

P , π | Γ ` e :: q
P | Γ ` e :: π ⇒ q

(⇒I)
P | Γ ` e :: π ⇒ q P 
 π

P | Γ ` e :: q
(⇒E)

P | Γ ` e :: σ a /∈ ftv (Γ ) ∪ ftv (P)
P | Γ ` e :: ∀a . σ

(q-∀I)

P | Γ ` e :: ∀a . σ
fpv (t) ⊆ dpv (Γ )
P | Γ ` e :: σ[t/a ]

(q-∀E)

P | Γ ` e :: σ
Q | Γ, x :: σ ` e ′ :: t

P ,Q | Γ ` let x = e in e ′ :: t
(let)

Pi | Γ ` ei :: ti ` markα
Ti

ti ≡ qi σi ≡ Gen(Γ ;Pi ⇒ qi)
Q | Γ, x 〈α〉 :: σ ` e ′ :: t ′ σ 6 σi fpv (σ) ⊆ dpv (Γ, α) `pred

α σ

Q | Γ ` let x 〈α〉 = typecase α of Ti → ei in e ′ :: t ′
(q-glet)

Pi | Γ, x 〈α〉 :: t , dpv (Ωi) ` ei :: ti ` markα
Ωi

ti ≡ qi

σ 6 σi σi ≡ Gen(Γ ;Pi ⇒ qi) σ ≡ ∀ai . t
Q | Γ, x 〈α〉 :: σ ` e ′ :: t ′ fpv (σ) ⊆ dpv (Γ, α)

Q | Γ ` letrec x 〈α〉 = typecase α of Ωi → ei in e ′ :: t ′
(q-gletrec)

Fig. 6. Type checking rules for Generic Haskell with Qualified types.

4.3 Type inference algorithm

This section describes the type-inference algorithm for type-indexed functions of
arity 1. Figure 8 shows the most important rules of our algorithm. The inference
judgement for the expression language takes the form P | S Γ `W e :: t ;∆. The
input parameters for the algorithm are an expression e and an environment Γ .
The algorithm either produces a type t , a substitution S , a set of predicates P
and constraints on instances of type-indexed functions ∆, or it fails.

The key idea of the algorithm is to collect the instance types of type-indexed
functions in the instance environment ∆, to then use this information to infer
the qualified base types of the functions.

The first type-application rule (w-gapp-1) specializes the type scheme of the
type-indexed function with a given type argument, provided that all occurrences

13



` travα
At ≡ t ′ ` intrPα

At t ′ ≡ q
` markα

At ≡ q
(mark)

q ≡ t = α ∧ t1 = A ∨ t = t2 ⇒ t
` intrPα

At1 t2 ≡ q
(intrP-1) ` intrPα

At1 t2 ≡ t2
(intrP-2)

` markα
Ati ≡ P ′

i ⇒ t ′i
` travα

AT ti ≡ P ′
i ⇒ T t ′i

(mark-app)
t 6= = T ti

` travα
At ≡ t

(mark-rest)

∀π . π ∈ P ∧ α ≡ α2 ⊃ {ai } | (P − π) `pred
α2 π

`pred
α ∀ai .P ⇒ t

(chk-preds)

a /∈ ftv (P) ∪ ftv (ε1)
α /∈ dpv (ε1) ∪ dpv (ε2) a ∈ {ai }

{ai } | P `pred
α a = α ∧ ε1 ∨ ε2

(chk-pred)

Fig. 7. Generalized marking relation and well-formedness of predicates.

of pattern variables are defined. Additionally, it instantiates the quantified type
variables with fresh ones.

The second rule (w-gapp-2) deals with recursive occurrences. Since the type
of function x is not yet known, it creates a fresh variable a and associates it
in ∆ with the type argument A. As type inference progresses, it provides more
information about variable a, both in substitution S and environment ∆.

The non-recursive generic let collects the arms’ types in the instance envi-
ronment (∆) with judgment P | S Γ `W

Arms(x) Ti → ei ;∆ , shown in Figure 10.
Judgement `x 〈α〉 ∆ q ;S2 computes a qualified base type for function x using
its corresponding instance types. The remaining judgments generalize the base
type and use it to type expression e.

The recursive generic let extends the previous rule with the requirement that
the inst algorithm only finds one instance for base-type scheme σ. In other words,
the principal type should not need predicates; if it does, type inference fails.
Note that arms are processed with an environment extended with an incomplete
binding to allow recursive invocations. An additional check prevents pattern
variables (fpv ({Ωi })) from escaping.

Type inference for arms. The judgement P | S Γ `W
Arms(x) Ai → ei ;∆ collects

the types of arms ei in instance environment ∆. The case for no arms returns
no information. The second case infers the type of arm e, which is stored in
the instance environment together with results ∆ and ∆2. The pattern variables
that are introduced can be used when processing e. Note that the substitution
(S2) resulting from the recursive call updates type information in ∆.

14



x :: ∀ai . P ⇒ t ∈ Γ fresh bi

P [bi/ai ] | id Γ `W x :: t [bi/ai ]; ∅
(w-var)

x 〈α〉 :: ∀ai . P ⇒ t ∈ Γ fresh bi fdv (A) ⊆ dpv (Γ )

P [A/α ][bi/ai ] | id Γ `W x 〈A〉 :: t [A/α ][bi/ai ]; ∅
(w-gapp-1)

x 〈α〉 :: · ∈ Γ fresh a fdv (A) ⊆ dpv (Γ )

∅ | id Γ `W x 〈A〉 :: a; x 〈A〉 ∼ a
(w-gapp-2)

P | S Γ, x :: a `W e :: t ; ∆ fresh a

P | S Γ `W λx → e :: Sa → t ; ∆
(w-→I)

P | S1 Γ `W e1 :: t1; ∆1 Q | S2 S1Γ `W e2 :: t2; ∆2
S2t1 ∼ t2 → a ≡ S3 fresh a
S3S2P ,S3Q | S3S2S1 Γ `W e1 e2 :: S3a;S3S2∆1,S3∆2

(w-→E)

P | S1 Γ, x :: a `W e :: t ; ∆ S1a ≡ t fresh a
Gen(S1Γ, ∆;P ⇒ t) ≡ σ
Q | S2 S1Γ, x :: σ `W e ′ :: t ′; ∆′

Q | S2S1 Γ `W let x = e in e ′ :: t ′;S2∆, ∆′ (w-let)

P | S1 Γ `W
Arms(x) Ti → ei ; ∆ `x 〈α〉 ∆ q ;S2

Gen(S2S1Γ,S2∆x ;S2P ⇒ q) ≡ σ
Q | S3 S2S1Γ, x 〈α〉 :: σ `W e ′ :: t ′; ∆′

∆′′ ≡ S3S2∆x , ∆′

S3Q | S3S2S1 Γ `W let x 〈α〉 = typecase α of Ti → ei in e ′ :: t ′; ∆′′ (w-glet)

P | S1 Γ, x 〈α〉 :: · `W
Arms(x) Ωi → ei ; ∆ `x 〈α〉 ∆ q ;S2

inst (S2P ⇒ q) ≡ {(S3, t)} Gen(S3S2S1Γ,S3S2∆x ; t) ≡ σ
fpv ({Ωi })#dpv (S3S2S1Γ ) ∪ fpv (S3S2∆x ) ∪ fpv (σ)
Q | S4 S3S2S1Γ, x 〈α〉 :: σ `W e ′ :: t ′; ∆′

∆′′ ≡ S4S3S2∆x , ∆′

S4Q | S4S3S2S1 Γ `W letrec x 〈α〉 = typecase α of Ωi → ei in e ′ :: t ′; ∆′′ (w-gletrec)

Fig. 8. Type inference algorithm.

15



a fresh mgu A t1 ≡ S
q ≡ a = α ∧ t1 = A ∨ a = t2 ⇒ a

intrPα
At1 t2 ≡ q

(W-intrP-1)

mgu A t1 is not defined
intrPα

At1 t2 ≡ t2
(W-intrP-2)

Fig. 9. Introduction of predicates for marking in type inference.

P | id Γ `W
Arms(x) ∅; ∅

(w-arm-1)

P | S Γ, fpv (Ω) `W e :: t ; ∆
P2 | S2 SΓ `W

Arms(x) R; ∆2

∆3 ≡ S2∆, ∆2, x 〈Ω〉 ∼ S2t

S2P ,P2 | S2S Γ `W
Arms(x) Ω → e,R; ∆3

(w-arm-2)

markα
Ai

ti ≡ Pi ⇒ t ′i
mgu (t ′i ) ≡ S1 t ′ ∈ {t ′i }
compoundα(S1(Pi ⇒ t ′)) ≡ q
simplify (q) ≡ (S2, q

′)
∆ ≡ ∆x S ≡ S2S1

`x 〈α〉 (∆, x 〈Ai〉 ∼ ti) q ′;S
(unify)

Fig. 10. Type inference algorithm for arms and unification of instance types.

Unification of instance types. The judgement `x 〈α〉 ∆  q ;S , shown in Fig-
ure 10, computes a qualified base type from the instance types of type-indexed
function x . First, the rule marks all instance types of x in environment ∆. Next,
it finds the most general unifier of all resulting types without considering pred-
icates. The preliminary base type results from the application of the unifying
substitution to all predicates P ′

i and any type t ′i . Finally, the rule invokes algo-
rithm compound to ensure consistent choices for constrained variables so that
the resulting qualified type is well-formed. The remaining condition ensures that
all type instances of x are processed.

Algorithm compound. The algorithm compound rewrites predicates that restrict
a type variable to a single predicate. That ensures consistent choices for that
type variable.

compoundα(a = α ∧ ε1 ∨ ε2, a = α ∧ ε′1 ∨ ε′2,P)
≡ compoundα(a = α ∧ ε1 ∧ ε′1 ∨ ε2 ∧ ε′2)

compoundα(a = α ∧ ε1 ∨ ε2,P)
≡ a = α ∧ ε1 ∨ ε2, compoundα(P)
where a = α does not occur in P

compoundα(∅)
≡ ∅
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Instances algorithm. This algorithm computes the set of instances of a qualified
type.

inst (q) ≡ inst ′ (id , q)
inst ′ (S , (ti = t ′i ∨ tj = t ′j ,P) ⇒ t)

= inst (S1S ,S1P ⇒ S1t)
∪ inst (S2S ,S2P ⇒ S2t)

where
S1 = mgu ti t ′i
S2 = mgu tj t ′j

The failure of the mgu algorithm in the computation
of S1 or S2 makes the corresponding
left or right union parameter empty.

inst ′ (S , t)
= {(S , t)}

Its worst case complexity is exponential. However, most type-indexed functions
generate type equations with enough information to make the average case good
enough for practical purposes. The overline on the calls to the mgu function
denotes the composition of the resulting substitutions.

Predicate simplification. Predicate simplification removes predicates that triv-
ially contradict type equations:

simplify (q)
= simplify ′ (q ; ∅; id)

simplify ′ (t1 = t2 ∧ ε ∨ ti = t ′i ,P ⇒ t ;Q ;S )
= simplify ′ (S ′(Q ,P ⇒ t); ∅;S ′S )
where S ′ = mgu ti t ′i

mgu t1 t2 is not defined
simplify ′ (ti = t ′i ∨ t1 = t2 ∧ ε,P ⇒ t ;Q ;S )

= simplify ′ (S ′(Q ,P ⇒ t); ∅;S ′S )
where S ′ = mgu tj t ′j

mgu t1 t2 is not defined
simplify ′ (π,P ⇒ t ;Q ;S )

= simplify ′ (P ⇒ t ;π,Q ;S )
where all equations in π are unifyable

simplify ′ (t ;P ;S )
= (S ,P ⇒ t)

The appendix proves the following two theorems for type inference.

Theorem 2 (Soundness of type inference). The type inference result of a
program can be used to construct a GQH type derivation for it.

5 Conclusions, related and future work

We have introduced several type inference problems typical for generic program-
ming, we have discussed (partial) solutions to these problems, and we have ar-
gued why, in most cases, we cannot achieve something better.
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Our main technical contribution is the introduction of an adapted type sys-
tem for a restricted class of type-indexed functions, in which we use a special
kind of qualified types for type-indexed functions. In the new type system, type-
indexed functions have principal types, and we can give a sound type-inference
algorithm for the base type of type-indexed functions. A prototype implementa-
tion is available at [23]. The algorithm is not complete, but the counterexamples
we found are rather contrived generic functions. In the type system we assume
that type-indexed functions have arity 1. This is a fundamental restriction. How-
ever, type-indexed functions of arity greater than 1 not in the library of Generic
Haskell are rare, so we expect our type-inference algorithm to be useful for most
generic programs. Our results also apply to similar approaches to generic pro-
gramming, such as PolyP, Haskell’s derivable type classes, and Clean’s generic
programming extension.

The type-argument inference problem has also been solved in Clean [1] and
PolyP [15], using similar techniques as we propose. Inferring base types for
generic functions is similar to System CT [4] and, to a lesser extent, GCaml [8].
In the former, a variant of anti-unification generalizes a set of instance types for
overloaded functions. In the latter, base types carry constraints that should be
solved at every type application. No attempt is made to infer an unconstrained
generalized type. In the ‘Scrap your boilerplate’ [20] approach the types of the
basic generic combinators have to be supplied explicitly, because of the poly-
morphic arguments used in the combinators. Using Haskell’s class system the
types of the functions that use these combinators can then be inferred. The
same largely holds for Hinze’s lightweight approach [11]. Just as kind inference
is a lot easier than type inference, inferring the kind of a type-indexed type [6,
13] is a lot easier than inferring the base type of a type-indexed function.

A type-inference problem we did not look at is to infer the type pattern in
the definition of a type-indexed function. Given the type of the type-indexed
function eq , we can infer from the arm eq True True = True in the definition
of eq that the type pattern for eq in this arm should be Bool. However, it will
be difficult to infer the pattern in the arm eq = (= =). We have not yet looked in
detail at this problem.

We expect that the qualified types approach we use might have applications
in other areas. The problem of inferring the base type of a type-indexed function
is the same as inferring the class declaration given the types of member functions
on instance types of the class [26]. This might be useful in checking that given
a class declaration and a number of instance declarations, the class declaration
doesn’t impose unnecessary restrictions on the types of member functions. In
the future we hope to investigate the relation between type inference for generic
functions and areas such as generalized algebraic data types and intersection
types. Furthermore, type inference for generic functions is a first step towards
generating generic functions from data type specific functions defined on several
data types. We intend to investigate how the techniques described in this paper
can be extended to be able to generate generic functions from examples.
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A Soundness proof for type system

A.1 Typed translation

This is a an extension of the GQH judgments from Figure 6. We use this to
prove the soundness of the system.

A derivation P | Γ ` e S
 e ′ :: σ translates a well-typed GQH program e and

produces a GH program e ′. The substitution S identifies a particular instance
of σ, using relation inst : inst (σ) ≡ (S , σ′).

A GQH binding x :: σ has a qualified type σ. Its translation to GH assigns
it an instance type, which is unqualified type. We use a substitution subscript
to identify one of the possible instances of x .

A.2 Soundness proof

Definition 1 (Instance type schemes1). The inst relation holds when a type
scheme in the QGH type system has a substitution S that satisfies the predicates
and the same substitution obtains an instance GH type scheme.

inst (∀ai .P ⇒ t) ≡ (S ,∀bi .St)
where 
 SP

{bi } = {ai } − dom (S )

The current section (for the soundness proof of GQH) uses this definition of
inst instead of the algorithmic one presented in Section 4.3.
1 We don’t explicitly distinguish between GH and QGH type schemes with different

syntactic categories. It is not a problem since it is always clear from the context.
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x 〈α〉 :: σ ∈ Γ fpv (A) ⊆ dpv (Γ ) inst (σ) ≡ (S , σ′)

P | Γ ` x 〈A〉 S [A/α ]
 xS 〈A〉 :: σ[A/α ]

(qt-gapp)

P | Γ, x :: t ′ ` e
∅
 e ′ :: t fpv (t ′) ⊆ dpv (Γ )

P | Γ ` λx → e
∅
 λx∅ → e ′ :: t ′ → t

(qt-→I)

P | Γ ` e1
∅
 e ′1 :: t ′ → t P | Γ ` e2

∅
 e ′2 :: t ′

P | Γ ` e1 e2
∅
 e ′1 e ′2 :: t

(qt-→E)

P | Γ ` e
S
 e ′ :: σ[t/a ] a /∈ ftv (Γ ) ∪ P

P | Γ ` e
[a 7→t ]S
 e ′ :: ∀a . σ

(qt-∀I)

P | Γ ` e
[a 7→t ]S
 e ′ :: ∀a . σ a /∈ dom (S)

P | Γ ` e
S
 e ′ :: σ[t/a ]

(qt-∀E)

P , π | Γ ` e
∅
 e ′ :: q

P | Γ ` e
∅
 e ′ :: π ⇒ q

(qt-⇒I)
P | Γ ` e

∅
 e ′ :: π ⇒ q P 
 π

P | Γ ` e
∅
 e ′ :: q

(qt-⇒E)

Fig. 11. Type translation rules for QGH, Part 1. Extends Figure 6.
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Ei =

(
let xS = e ′ in [ ] / P | Γ ` e

S
 e ′′′ :: σ

inst (σ) = (S , σ′)

)
Q | Γ, x :: σ ` e ′

∅
 e ′′ :: t

P ,Q | Γ ` let x = e in e ′
∅
 Ei [e ′′ ] :: t

(qt-let)

Ej =

8>>>>><>>>>>:
let xSj 〈α〉 = typecase α of Ti → eij in [ ] /

SjSiPi | Γ ` ei
∅
 eij :: SjSi ti

` markα
Ti

ti ≡ qi

σi ≡ Gen(Γ ;Pi ⇒ qi)
σ6Si

σi

inst (σ) ≡ (Sj , σj )

9>>>>>=>>>>>;
Q | Γ, x 〈α〉 :: σ ` e ′

∅
 e ′′ :: t ′ fpv (σ) ⊆ dpv (Γ, α) `pred

α σ

Q | Γ ` let x 〈α〉 = typecase α of Ti → ei in e ′
∅
 Ej [e ′′ ] :: t ′

(qt-glet)

SiPi | Γ, x 〈α〉 :: t , dpv (Ωi) ` ei
∅
 e ′i :: Si ti ` markα

Ωi
ti ≡ qi

σ 6 σi σi ≡ Gen(Γ ;Pi ⇒ qi) σ ≡ ∀aj . t

inst (σi) ≡ (Si , σ)

Q | Γ, x 〈α〉 :: σ ` e ′
∅
 e ′′ :: t ′ fpv (σ) ⊆ dpv (Γ, α)

Q | Γ ` letrec x 〈α〉 = typecase α of Ωi → ei in e ′

∅
 let x∅ 〈α〉 = typecase α of Ωi → e ′i in e ′′ :: t ′

(q-gletrec)

Fig. 12. Type translation rules for QGH, Part 2. Extends Figure 6.

22



Lemma 1. The inst relation is always defined on unqualified types: inst (t) ≡
(∅, t).

Definition 2 (Instances environment). The function inst transforms a QGH
environment Γ into an environment valid in the GH type system. The transfor-
mation takes every binding from Γ and produces a set of bindings, each indexed
by a substitution that witnesses the instance type of the original type scheme σ.

instΓ (Γ ) ≡ {xS 〈α〉 :: σ′ | x 〈α〉 :: σ ∈ Γ
, inst (σ) ≡ (S , σ′)} ∪

{xS :: σ′ | x :: σ ∈ Γ
, inst (σ) ≡ (S , σ′)}

Lemma 2 (Preservation of instances under pattern variable substitu-
tion). If inst (σ[A/α ]) ≡ (S ′, σ′) for a binding x 〈α〉 :: σ with well-formed
predicates, then there exist a substitution S ′′ and type scheme σ′′ such that
inst (σ) = (S ′′, σ′′), σ′′[A/α ] ≡ σ′ and S ′′[A/α ] = S ′.

Proof. We prove the lemma by constructing the required S ′′ and σ′′. Being well-
formed, predicates in σ with an occurring α have the form a = α ∧ ε1 ∨ ε2.
From the definition of inst (σ[A/α ]) ≡ (S ′, σ′), we have 
 S ′(a = A ∧ ε1 ∨ ε2)
for every predicate in σ[A/α ]. Now, we construct S ′′ by making S ′a ≡ S ′′a for
type variables a that are not equated to the type argument α in σ. Otherwise,
we consider the predicate where a is equated to α; we have two possibilities: S ′

satisfies a = A ∧ ε1 or ε2, both in σ[A/α ]. In the former case, we make S ′′a ≡ α
which satisfies a = α ∧ ε1 and in the latter case we choose S ′′a ≡ S ′a which
satisfies ε2.

We justify that S ′′a ≡ α satisfies equations ε1 and the other predicates in σ.
Suppose it doesn’t, then there is an equation in σ along the lines of a = A. Such
an equation does not occur in well-formed predicates and is thus a contradiction.
Well-formedness also forbids equations such as A = α in σ, which would not be
satifiable in σ but would in σ[A/α ].

Repeating the procedure for all variables we have S ′′[A/α ] = S ′ and by def.
of inst we obtain inst (σ) ≡ (S ′′, σ′′). Finally, it follows that σ′′[A/α ] ≡ σ′.

Lemma 3. For all a, σ, σ′, S and t such that a /∈ dom (S ) we have that
inst (∀a . σ) ≡ ([a 7→ t ] S , σ′) if and only if inst (σ[t/a ]) ≡ (S , σ′).

Lemma 4. For all bindings x 〈α〉 :: σ, A, S ′, S ′′, σ′, σ′′ such that inst (σ) ≡
(S ′, σ′) and inst (σ[A/α ]) ≡ (S ′′, σ′′); we have σ′′ ≡ σ′[A/α ] if S ′′ ≡ S ′[A/α ].

Lemma 5. For all π, t , S and q such that 
 π we have that inst (π ⇒ q) ≡
(∅, t) if and only if inst (q) ≡ (∅, σ).

Lemma 6 (Instances of a generic instance). If σ6Sσ′ then inst (σ) ≡
(S ′′, σ′′) implies inst (σ′) ≡ (S ′′S , σ′′).

Lemma 7 (Mark has solutions). If ` markα
AΓ ; t1 ≡ P2 ⇒ t2 and 
 SP2

then St1 ≡ St2[A/α ].
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Proof. We prove the following: If ` markα
AΓ ; t1 ≡ P2 ⇒ t2 or ` travα

AΓ ; t1 ≡
P2 ⇒ t2 and 
 SP2, then St1 ≡ St2[A/α ].

– Case (makeQ): We use the ind. hyp.: if ` travα
AΓ ; t1 ≡ P2 ⇒ t2 and 
 SP2,

then St1 ≡ St2[A/α ].
From 
 S (P , a = α ∧ t = A ∨ a = t ′) it follows that {Sa ≡ α,St ≡ A} or
{Sa = St ′}. We need to prove St ≡ Sa[A/α ]. Under the first set of conditions
we can establish A ≡ α[A/α ] and then A ≡ A. Under the second set we have
St ≡ St ′[A/α ] which is exactly what the ind. hyp. tells us.

– Case (mark-rest): This case is trivial.
– Case (mark-app): By the ind. hyp. we have: if ` markα

AΓ ; ti ≡ P ′
i ⇒ t ′i and


 SP ′
i , then Sti ≡ St ′i [A/α ]. The premises are easily satisfied, so using

congruence we obtain: T Sti ≡ T St ′i [A/α ]. The substitutions do not affect
T , thus, it follows that S (T ti) ≡ S (T t ′i )[A/α ].

Theorem 3 (Soundness). If P | Γ ` e S
 e ′ :: σ and 
 P and inst (σ) ≡

(S , σ′) and instΓ (Γ ) ≡ Γ ′ then Γ ′ ` e ′ :: σ′.

Note that relation inst may not hold when the type scheme has a predicate
where a free variable occurs. It follows that this theorem does not hold for such
predicates. It is easy to handle such cases moving the predicate from the scheme
to predicates P . Otherwise that variable can be quantified.

Proof. We use an induction argument on the type derivation.

– Case (qt-var): From x :: σ ∈ Γ , inst (σ) ≡ S ;σ′ and the definition of
instΓ (Γ ) ≡ Γ ′ we have xS :: σ′ ∈ Γ ′, which is the required premise to
obtain Γ ′ ` xS :: σ′.

– Case (qt-gapp): From x 〈α〉 :: σ ∈ Γ and inst (σ) ≡ (S , σ′) we have xS 〈α〉 ::
σ′ ∈ Γ ′ such that instΓ (Γ ) ≡ Γ ′. It follows that Γ ′ ` xS 〈A〉 :: σ′[A/α ].
From inst (σ[A/α ]) ≡ (S [A/α ], σ′′) and Lemma 4 we have σ′[A/α ] ≡ σ′′

and thus Γ ′ ` x 〈a〉 :: σ′′, as required.
– Case (qt-→I): We have inst (t ′ → t) ≡ (∅, t ′ → t) and inst (t) ≡ (∅, t)

which we use to satisfy the ind. hyp. premise and obtain Γ ′′ ` e ′ :: t such
that instΓ (Γ, x :: t ′) ≡ Γ ′′. By the definition of instΓ we also have that
Γ ′′ ≡ Γ ′, x∅ :: t ′ and thus Γ ′ ` λx∅ → e ′ :: t ′ → t .

– Case (qt-→E): Using Lemma 1 we satisfy the needed premises of the in-
duction cases to obtain Γ ′ ` e ′

1 :: t ′ → t and Γ ′ ` e ′
2 :: t ′. It follows that

Γ ′ ` e ′
1 e ′

2 :: t .
– Case (qt-∀I): We have inst (∀a . σ) ≡ [a 7→ t ] S ;σ′ which implies inst (σ[t/

a ]) ≡ (S , σ′) by Lemma 3. The induction hypothesis states that if inst (σ[t/
a ]) ≡ (S , σ′′) for all σ′′ then Γ ′ ` e :: σ′′. It follows that Γ ′ ` e :: σ′.

– Case (qt-∀E): We have inst (σ[t/a ]) ≡ (S , σ′) which implies inst (∀a . σ) ≡
([a 7→ t ] S , σ′) by Lemma 3. The induction hypothesis states that if inst (∀a . σ) ≡
([a 7→ t ] S , σ′′) then Γ ′ ` e :: σ′′ for all σ′′. It follows that Γ ′ ` e :: σ′.

– Case (qt-⇒I): From inst (π ⇒ q) ≡ (∅, t ′) and Lemma 5 it follows that
inst (q) ≡ (∅, t ′) which we use to obtain Γ ′ ` e ′ :: t ′ from the induction
hypothesis.
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– Case (qt-⇒E): From inst (q) ≡ (∅, t ′), 
 π and Lemma 5 it follows that
inst (π ⇒ q) ≡ (∅, t ′) which we use to obtain Γ ′ ` e ′ :: t ′ from the induction
hypothesis.

– Case (qt-let): Assertion inst (σ) ≡ (S , σ′) satisfies the induction hypothesis
premise to obtain Γ ′ ` e ′′′ :: σ′ for all e ′′′ in Ei . Note that we may weaken
the typing of instance σi with an assumption xSj

:: σj of another instance j
as follows Γ ′, xSj :: σj ` ei :: σi since x /∈ fv (e). From the definition of instΓ

we have instΓ (Γ, x :: σ) ≡ Γ ′, xSi :: σi for all Si and σi such that inst (σ) ≡
(Si , σi) . It follows that we can obtain Γ ′, xSi

:: σi ` e ′′ :: t from the induction
hypothesis. We now show that by nesting the definitions for the instances of
x we build the required environment Γ ′, xSi

:: σi starting from Γ ′. Indeed,
taking E0 [E1 [e ′′ ]] as a translation (assuming two instances), we start with
the environment Γ ′, extended to Γ ′, xS0 :: σ0, and then Γ ′, xS0 :: σ0, xS1 :: σ1

when it reaches e ′′. Since we can weaken the typing of an instance of x by
inserting the bindings of previous instances, we are able to build a typed
translation for let.

– Case (qt-glet): From inst (σ) ≡ (Sj , σj ), Lemma 6 and the def. of inst , we
have 
 SjSiPi , which satisfies a condition from the ind. hyp. to give Γ ′ `
eij :: SjSi ti . Using assumption qi ≡ P ′

i ⇒ t ′i and Lemma 7 we obtain SjSi ti ≡
SjSi t ′i [Ti/α ]. From assumption ∀ak . tj ≡ σj and the def. of inst it follows
that tj ≡ SjSi t ′i and so Γ ′ ` eij :: tj [Ti/α ], which we may weaken as above
with an additional assumption: Γ ′, xSj ′ 〈α〉 :: σj ′ ` eij :: tj . From the ind.
hyp. Γ, xSj

〈α〉 :: σj ` e ′′ :: t ′ and the previous result we may nest instance
definitions to obtain the desired typing derivation for the translation. Note
that the definition of inst ensures To obtain ak#ftv (Γ ′), we choose variables
not occurring in Γ for the quantified variables of σ, then by the definition
of inst it follows that the same holds for σj .

– Case (qt-gletrec): From inst (σi) ≡ (Si , σ) and assumming qi ≡ P ′
i ⇒ t ′i we

have 
 SiPi ,SiP ′
i . Then we obtain Γ ′, x∅ 〈α〉 :: t , dpv (Ωi) ` ei :: Si ti such

that inst (Γ ) ≡ Γ ′. From Lemma 7 we have Si ti ≡ Si t ′i [Ωi/α ] and by the
def. of inst : Si t ′i ≡ t ; it follows that Γ ′, x∅ 〈α〉 :: t ` e ′

i :: t [Ωi/α ]. From the
ind. hyp. we have Γ ′, x∅ 〈α〉 :: σ ` e ′′ :: σ. Finally, to complete the proof, we
obtain aj#ftv (Γ ′) following the same argument as in the previous case.

The typed translation rules in Figure 6 are different than the ones in Fig-
ure 11. It remains for us to show that whenever a term is typable under GQH,
we can translate it to GH.

Definition 3 (Well-formed environments). As pointed out in Section 2.1, a
well-formed environment Γ binds possibly type-indexed functions to type schemes.
The type schemes of type-indexed functions should be well-formed. The environ-
ment Γ may also introduce type pattern variables explicitly (Γ, α) or in type-
indexed function bindings (Γ, x 〈α〉 :: σ), but only if not already bound in envi-
ronment Γ .

Lemma 8 (Preservation of typing under substitution). If P | Γ ` e :: σ
then for all S we have SP | SΓ ` e :: Sσ.
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Lemma 9 (Preservation of typing under predicate extension). If P |
Γ ` e :: σ then for all Q we have P ,Q | Γ ` e :: σ.

Lemma 10 (Specification of unification). If t1 ∼ t2 ≡ S then St1 ≡ St2

Lemma 11 (Preservation of type equality under substitution). If t1 ≡
t2 then St1 ≡ St2 for all S .

Theorem 4. If P | Γ ` e :: σ, 
 P and inst (σ) ≡ (S , σ′) for a well-formed
environment Γ then P | Γ ` e S

 e ′ :: σ.

Proof. We do the proof only for the most interesting cases.

– Case (gapp): From inst (σ[A/α ]) ≡ (S , σ′) and Lemmma 2 we have that
inst (σ) ≡ (S ′, σ′′) such that σ′′[A/α ] ≡ σ′ and S ′[A/α ] ≡ S . It follows that
P | Γ ` e S

 e ′ :: σ[A/α ].
– Case (qt-let): We proceed to build the Ei expressions with holes for every

σ′ such that inst (σ) ≡ (S , σ′). We use the ind. hyp. with substitution S to

obtain P | Γ ` e S
 e ′′′ :: σ. The next ind. hyp. gives us Q | Γ, x :: σ ` e ′ ∅

 
e ′′ :: t .

– Case (qt-glet): We proceed to build the Ej expressions with holes for every σj

such that inst (σ) ≡ (Sj , σj ). First, we make explicit the witness substitution
for every arm σ 6 σi as follows: σ6Si

σi . From Lemma 8 we obtain SjSiPi |
SjSiΓ ` ei :: SjSi ti . We choose σ such that the quantified variables do
not occur in Γ , the same holds for σi and thus SjSiΓ ≡ Γ ; it follows that
SjSiPi | Γ ` ei :: SjSi ti . Now applying the ind. hyp. we obtain SjSiPi |
Γ ` ei

∅
 eij :: SjSi ti and Q | Γ, x 〈α〉 :: σ ` e ′ ∅

 e ′′ :: t ′ while the
remaining conditions are already available. Note that the ind. hyp. requires
a well-formed environment. We enforce well-formedness on the new binding
with a well-formedness check on its predicates.

– Case (qt-gletrec): Similar to the previous case.

B Type Inference

Lemma 12 (Definedness of pattern variables in type inference). If for
a well-formed environment Γ , expression e, type inference P | S Γ `W e :: t ;∆
succeeds, then we have that fpv (P) ⊆ dpv (Γ ), fpv (t) ⊆ dpv (Γ ), fpv (∆) ⊆
dpv (Γ ) and fpv (Sa) ⊆ dpv (Γ ) for every a such that a ∈ dom (S ).

Lemma 13 (Definedness of pattern variables in type inference for arms).
If for a well-formed environment Γ , arms Ωi → ei , type inference P | S Γ `W

Arms(x)

Ωi → ei ;∆ succeeds, then we have that fpv (P) ⊆ dpv (Γ ), fpv (∆) ⊆ dpv (Γ )
and fpv (Sa) ⊆ dpv (Γ ) for every a such that a ∈ dom (S ).

Proof. The proof for most cases of these two theorems is trivial. We outline the
proof for the two most interesting cases.
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– Case (w-glet): Unification of instance types only introduce the pattern vari-
able α, together with the ind. hyp. we have that fpv (q) ∈ dpv (Γ, α) and
fpv (S2a) ∈ dpv (Γ, α) for a ∈ dom (S2). Combined with the definition of
generalization, this gives us fpv (σ) ∈ dpv (Γ, α). It is easy to show that the
second ind. hyp. gives us the remaining necessary conditions to prove this
case.

– Case (w-gletrec): A difference with the previous case is that instance unifica-
tion introduces pattern variables from type patterns. A result is that pattern
variables in q , t and the ranges of S2 and S3 do not occur in dpv (Γ, α). How-
ever, the check in the third line ensures that those pattern variables do not
escape. It follows that the second ind. hyp. is satisfied and this case holds.

Theorem 5 (Soundness of type inference). If P | S Γ, xi〈α〉 :: · `W e ::
t ;∆ and inst∆ (∆, xi) ≡ (S ′, ti) then S ′P | S ′SΓ, xi 〈αi〉 :: ti ` e1 :: S ′t.

Proof. We do a case analysis for the most interesting cases only:

– Case (w-gapp-1): We have that x 〈α〉 :: ∀ai .S ′P ⇒ S ′t ∈ S ′Γ, xi 〈αi〉 :: ti
since quantified variables are not in the domain of S ′, it follows by rule (q-
gapp) that S ′P [A/α ][bi /ai ] | Γ, xi 〈αi〉 :: ti ` x 〈A〉 :: ∀ai .S ′P [A/α ] ⇒
S ′t [A/α ]. We obtain the expected S ′P [A/α ][bi/ai ] | Γ, xi 〈αi〉 :: ti ` x 〈A〉 ::
S ′t [A/α ][bi/ai ] using rules (q-∀E) and (q-⇒E).

– Case (w-gapp-2): We have that inst∆ (∆; xi 〈αi〉, x 〈α〉) ≡ (S ′, (ti , t)) and
thus x 〈α〉 :: t ∈ S ′Γ, xi 〈αi〉 :: ti , x 〈α〉 :: t . By rule (q-gapp) it follows that
∅ | S ′Γ, xi 〈αi〉 :: ti , x 〈α〉 :: t ` x 〈A〉 :: t [A/α ]. Finally by the definition of
inst∆ we have ∅ | S ′Γ, xi 〈αi〉 :: ti , x 〈α〉 :: t ` x 〈A〉 :: S ′a, as desired.

– Case (w-→E): We need to obtain S ′
3S3(S2P ,Q) | S ′

3S3S2S1Γ, xi 〈α〉 :: ti `
e1 e2 :: S ′

3S3a using S3S2P ,S3Q | S3S2S1 Γ, xi〈αi〉 :: · `W e1 e2 :: S3a;S3S2∆1,S3∆2

and inst∆ (S3S2∆1,S3∆2; xi (αi)) ≡ (S ′
3, ti).

From the first ind. hyp. we have that if inst∆ (∆1; xi (αi)) ≡ (S ′
1, t ′i ) then

S ′
1P | S ′

1S1Γ, xi 〈αi〉 :: t ′i ` e1 :: S ′
1t1 for all S ′

1. From Lemma 15, if inst∆ (S3S2∆1; xi 〈αi〉) ≡
(S ′′

1 , t ′i ) holds for any S ′′
1 then we may choose S ′

1 ≡ S ′′
1 S3S2 to satisfy the

premise of the first ind. hyp. Next, we use Lemma 14 so that satisfaction
of inst∆ (S3S2∆1,S3∆2; xi (αi)) ≡ (S ′

3, ti) implies inst∆ (S3S2∆1; xi 〈αi〉) ≡
(S ′′

1 , t ′i ) such that S ′
3 ≡ S ′′

1 and ti ≡ t ′i . It follows that we obtain the ind. hyp.
premise inst∆ (∆1; xi (αi)) ≡ (S ′

3S3S2, ti) and thus, S ′
3S3S2P | S ′

3S3S2S1Γ, xi 〈αi〉 :: ti `
e1 :: S ′

3S3S2t1. Applying Lemma 9, we obtain the desired S ′
3S3S2P ,S ′

3S3Q |
S ′

3S3S2S1Γ, xi 〈αi〉 :: ti ` e1 :: S ′
3S3S2t1. Following a similar procedure for the

second ind. hyp. we obtain S ′
3S3S2P ,S ′

3S3Q | S ′
3S3S2S1Γ, xi 〈αi〉 :: ti ` e2 ::

S ′
3S3t2. Using Lemma 10 and Lemma 11 we know that S ′

3S3S2t1 ≡ S ′
3S3t2 →

S ′
3S3a and thus S ′

3S3S2P ,S ′
3S3Q | S ′

3S3S2S1Γ, xi 〈αi〉 :: ti ` e1 :: S ′
3S3t2 →

S ′
3S3a; which gives the required S ′

3S3S2P ,S ′
3S3Q | S ′

3S3S2S1Γ, xi 〈αi〉 :: ti `
e1 e2 :: S ′

3S3a.
– Case (w-glet): We need to establish S ′′Q | Γ ′ ` let . . . e ′ :: S ′′t ′ using

inst∆ (∆′′, xj 〈αj 〉) ≡ (S ′′, tj ) and Q | S Γ, xj 〈αj 〉 :: · `W let . . . e ′ :: t ′;∆′′

where S ≡ S3S2S1 and Γ ′ ≡ S ′′SΓ, xj 〈αj 〉 :: tj .
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By Theorem 6 if inst∆ (∆; xj 〈αj 〉) ≡ (S ′
1, t ′j ) then S ′

1S1Pi | S ′
1S1Γ, xj 〈αj 〉 :: t ′j `

ei :: S ′
1S1ti such that P ≡ S1Pi and x 〈Ti〉 ∼ S1ti ∈ ∆. Using Lemmas 15

and 14, as in the application case, we obtain the required S ′′SPi | Γ ′ ` ei ::
S ′′Sti and S ′′S3S2P ≡ S ′′SPi .
Now, type inference for arms gives us x 〈Ti〉 ∼ S1ti ∈ ∆, which combin-
ing with Lemma 18 gives ` markα

Ti
S1ti ≡ P ′

i ⇒ t ′i for every Ti and S1ti
for some P ′

i and t ′i such that t2 ≡ S2t ′i , P2 
 S2P ′
i and q ≡ P2 ⇒ t2.

We use Lemma 19 and preservation of type equality under substitution to
infer ` markα

Ti
S ′′Sti ≡ S ′′S3S2(P ′

i ⇒ t ′i ) (required by q-glet), S ′′S3t2 ≡
S ′′S3S2t ′i , S ′′S3P2 
 S ′′S3S2P ′

i and q ≡ (P2 ⇒ t2). We assume σ′ ≡
Gen(Γ ′;S ′′S3S2P ⇒ S ′′S3q) and σi ≡ Gen(Γ ′;S ′′S3S2(S1Pi ,P ′

i ⇒ t ′i )).
The needed statement σ′ 6 σi follows trivially from S ′′S3S2P ,S ′′S3P2 

S ′′S3S2(S1Pi ,P ′

i ), S ′′S3t2 ≡ S ′′S3S2t ′i and the fact that free variables of σi

are also free in σ′.
The ind. hyp. for e ′ combined with Lemma 8 gives S ′′S3Q | Γ ′, x 〈α〉 ::
S ′′S3σ ` e ′ :: S ′′t ′, as needed. Now, it remains for us to show that σ′ ≡
S ′′S3σ. We note that S3 may substitute only free variables of σ, thus S3Gen(S2S1Γ,S2∆x ;S2P ⇒
q)) ≡ Gen(S3S2S1Γ,S3S2∆x ;S3(S2P ⇒ q))). The same argument applies
to S ′′ so that S ′′S3σ ≡ Gen(S ′′S3S2S1Γ,S ′′S3S2∆x ;S ′′S3(S2P ⇒ q))).
From the definition of inst∆ we have that ftv (S ′′∆′′) ≡ ftv (tj ), we may
now write S ′′S3σ ≡ Gen(Γ ′;S ′′SP ⇒ S ′′q) because the free variables of
S ′′∆′ don’t overlap with the quantified variables of S ′′S3σ

′. It follows that
S ′′S3Q | Γ ′, x 〈α〉 :: σ′ ` e ′ :: S ′′t ′. The remaining condition for the defined-
ness of pattern variables follows from Lemmas 12 and 13.

– Case (w-gletrec): We need to establish S ′′Q | Γ ′ ` let . . . e ′ :: S ′′t ′ using
inst∆ (∆′′; xj 〈αj 〉) ≡ (S ′′, tj ) and Q | S Γ, xj 〈αj 〉 :: · `W let . . . e ′ :: t ′;∆′′

where S ≡ S4S3S2S1 and Γ ′ ≡ S ′′SΓ, xj 〈αj 〉 :: tj .
By Theorem 6 if inst∆ (∆; xj 〈αj 〉, x 〈α〉) ≡ (S ′

1, (t ′j , tx )) then S ′
1S1Pi |

S ′
1S1Γ, xj 〈αj 〉 :: t ′j , x 〈α〉 :: tx ` ei :: S ′

1S1ti such that P ≡ S1Pi and
x 〈Ωi〉 ∼ S1ti ∈ ∆. First, we use Lemma 18 to obtain ` markα

Ai
tk ≡ P ′

k ⇒ t ′k
for every x 〈Ak 〉 ∼ tk ∈ ∆ such that P ′′ 
 S2P ′

k , t ′′ ≡ S2t ′k and q ≡ P ′′ ⇒ t ′′.
Next, by the definition of algorithm inst , we have that 
 S3S2P ,S3P ′′ and
S3t ′′ ≡ t . Applying substitutions where necessary and using Lemma 7, we
have S4S3S2tk ≡ S4t [Ak /α ], giving inst∆ (S4S3S2∆; x 〈α〉) ≡ (id ,S4t)
(2). By the definition of inst∆, we can write inst∆ (∆′′; xj 〈αj 〉, x 〈α〉) ≡
(S ′′, (tj ,S ′′S4t)). Now, applying Lemmas 15 and 14 we obtain S ′′SPi |
Γ ′, x 〈α〉 :: S ′′S4t ` ei :: S ′′Sti . Since x (Ωi) ∼ Sti ∈ ∆, then ` markα

Ai
Sti ≡

SP ′
i ⇒ St ′i , 
 S ′′SP ′

i and S ′′Sti ≡ S ′′S4t . We take σ′ = Gen(Γ ′;S ′′S4t) and
σi = Gen(Γ ′;S ′′S (P ′

i ⇒ t ′i )), it follows that σ′ 6 σi for all σi .
We combine the ind.hyp. with instance lemmas as above to obtain S ′′Q |
Γ ′, x 〈α〉 :: S ′′S4σ ` e ′ :: S ′′t ′. It remains to show σ′ ≡ S ′′S4σ. We follow
the reasoning of the previous case:

S ′′S4Gen(S3S2S1Γ,S3S2∆x ; t) ≡
S ′′Gen(SΓ,S4S3S2∆x ;S4t) ≡
Gen(S ′′SΓ,S ′′S4S3S2∆x ;S ′′S4t) ≡
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Gen(Γ ′;S ′′S4t)
Next, we use Lemmas 12 and 13 to show that pattern variables in the type
scheme are defined. This concludes our proof.

Theorem 6 (Soundness of type inference for arms). If P | S Γ, xj 〈αj 〉 :: · `W
Arms(x)

Ωi → ei ;∆ and inst∆ (∆, xj 〈αj 〉) ≡ (S ′, tj ) then for every ei and Ωi there are
ti and Pi such that x 〈Ωi〉 ∼ ti ∈ ∆, S ′SPi | S ′SΓ, xj 〈αj 〉 :: tj ` ei :: S ′ti and
S ′P ≡ S ′SPi for some Pi .

Proof. By case analysis.

– Case (w-arm-1): Holds trivially.
– Case (w-arm-2): Given S2P ,P2 | S2S Γ, xj 〈αj 〉 :: · `W

Arms(x) Ω → e, Ωi → ei ;∆3

and inst∆ (∆3, xj (αj )) ≡ (S ′, tj ) we want to prove that for every ei and Ωi

(also e and Ω) there are ti and Pi such that x 〈Ωi〉 ∼ ti ∈ ∆3, t and
P such that x 〈Ω〉 ∼ t ∈ ∆3, S ′Pi | S ′S2SΓ, xj 〈αj 〉 :: tj ` ei :: S ′ti ,
S ′S2P | S ′S2SΓ, xj 〈αj 〉 :: tj ` e :: S ′S2t and S2P ,P2 ≡ S2P ,Pi .
Using Lemma 5 we obtain that if P | S Γ, xj 〈α〉 :: · `W e :: t ;∆ and
inst∆ (∆, xj 〈αj 〉) ≡ (S ′′, t ′j ) then S ′′P | S ′′SΓ, xj 〈αj 〉 :: t ′j ` e :: S ′′t . Using
Lemmas 15 and 14 we obtain S ′S2P | S ′′S2SΓ, xj 〈αj 〉 :: tj ` e :: S ′′S2t . Us-
ing a similar procedure for the ind. hyp. we obtain S ′Pi | S ′′S2SΓ, xj 〈αj 〉 :: tj `
ei :: S ′ti and furthermore xi 〈αi〉 ∼ ti ∈ ∆2 and P2 ≡ Pi for all arms i .
We have all the required conditions for the ind. hyp. part of the theorem. It is
easy to see that S2P ,P2 ≡ S2P ,Pi , x 〈α〉 ∼ S2t ∈ ∆3 and xi 〈αi〉 ∼ ti ∈ ∆3,
thereby proving the theorem.

B.1 Properties of unification of instance types

We add the following case to process instance environments that lack a binding
for x .

∆x ≡ ∆
a fresh

`x ∆ a; ∅
(unify-empty)

This case is not strictly needed since the language forbids definitions of generic
functions with no cases. Nevertheless, this case is necessary to prove the correct-
ness of the algorithm.

Definition 4 (Instance of an instances environment). The instance of an
instances environment ∆ is written inst∆ (∆; xi 〈αi〉) ≡ (S , ti). It holds if for
all xi 〈Aj 〉 ∼ tj ∈ ∆ we have that Stj ≡ ti [Aj /αi ].

Lemma 14. If inst∆ (∆, ∆′; xi 〈αi〉) ≡ (S , ti) then inst∆ (∆; xi 〈αi〉 ≡ (S , t ′i ).

Lemma 15. If inst∆ (S∆; xi 〈α〉) ≡ (S ′, t ′i ) then inst∆ (∆; xi 〈α〉) ≡ (S ′S , t ′i ).

The two previous lemmas are easily proved using the definition of inst∆.
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Lemma 16. If (S ′, t ′) is a solution for algorithm inst (P ⇒ t) then 
 S ′P and
S ′t ≡ t ′.

Lemma 17. If ` markα
AΓ ;St ≡ P ′ ⇒ t ′ and 
 S ′P then ` markα

AΓ ; t ≡ P ′′ ⇒
t ′′ such that S ′SP ′′ and S ′t ′ ≡ S ′St ′′.

Lemma 18 (Properties of instance unification). If `x 〈α〉 ∆  P ⇒ t ;S
and x 〈Ai〉 ∼ ti ∈ ∆ then ` markα

Ai
ti ≡ Pi ⇒ t ′i for every Ai and ti such that

t ≡ St ′i , P ≡ SPi , σ ≡ Gen(Γ ;P ⇒ t) and `pred
α σ for all Γ and some Pi and

ti .

Proof. Initially, all qualified types Pi ⇒ t ′i are well formed if generalized. That
is because the introduced variables are fresh and the types ti do not have an
occurrence of α. After unification, we have three sets of predicates, well-formed
predicates, predicates with the fresh variable replaced by a type constant and
predicates sharing the fresh variable. The compound algorithm eliminates the
last set of predicates by replacing each group of sharing predicates by a single
one that entails the group. Note that at this point predicates with consistent
equations are well-formed.

We continue the proof by showing that simplification gets rid of non-well-
formed predicates, keeping the well-formed ones. The main algorithm is, in fact,
simplify ′. We maintain two invariants. First, the second parameter holds well-
formed predicates. The other invariant for the first parameter is that predicates
with consistent equations are well-formed. We do a case analysis:

– One of the left equations is inconsistent. We must apply the substitutions
obtained by the unifier to the rest of the predicates. Remember that the fresh
variables (if any) occur in only one predicate. Thus only variables occuring
in the original type are substituted in the other predicates. It follows that
well-formed predicates are still well-formed.

– One of the right equations is inconsistent. By the same argument as above,
fresh variables in the other predicates are left untouched. Moreover, since
the type argument α is equated to a fresh variable, no α is added to the
other predicates. It follows that well-formedness of the other predicates is
preserved.

– Predicate with consistent equations. Having consistent equations, the current
predicate is well-formed.

– No more predicates. This case returns a qualified type with well-formed
predicates.

The remaining properties of the algorithm follow easily from the definitions
of the used algorithms.

Lemma 19 (Preservation of marking under substitution). If ` markα
At ≡

q then for all substitutions S we have that ` markα
ASt ≡ Sq.
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B.2 Most general unifier

The standard most general unifier algorithm:

mgu a a = id
mgu a t = {a 7→ t }

where a does not occur in t
mgu t a = {a 7→ t }

where a does not occur in t
mgu α α = id
mgu (T ti) (T t ′i ) = mgu ti t ′i
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