
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

44

A Specification for Typed Template Haskell

ANONYMOUS AUTHOR(S)

Multi-stage programming is a proven technique that provides predictable performance characteristics by

controlling code generation. We propose a core semantics for Typed Template Haskell, an extension of Haskell

that supports multi staged programming that interacts well with polymorphism and qualified types. Our

semantics relates a declarative source language with qualified types to a core language based on the the

polymorphic lambda calculus augmented with multi-stage constructs.

Additional Key Words and Phrases: staging, polymorphism, constraints

1 INTRODUCTION
Producing optimal code is a difficult task that is greatly assisted by staging annotations, a technique
which has been extensively studied and implemented in a variety of languages [Kiselyov 2014;

Rompf and Odersky 2010; Taha and Sheard 2000]. These annotations give programmers fine control

by instructing the compiler to generate code in one stage of compilation that can be used in another.

The classic example of staging is the power function, where the value nk can be efficiently

computed for a fixed k by generating code where the required multiplications have been unrolled

and inlined. The incarnation of staged programming in Typed Template Haskell
1
benefits from

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],

allowing a definition that can be reused for any type that is qualified to be numeric:

power :: Num a ⇒ Int → Code a → Code a
power 0 cn = J 1 K
power k cn = J $(cn) ∗ $(power (k − 1) cn) K

Any value n::Int can be quoted to create J n K::Code Int, then spliced in the expression $(power 5 J n K)
to generate n ∗ (n ∗ (n ∗ (n ∗ (n ∗ 1)))). Thanks to type class polymorphism, this works when n has

any fixed type that satisfies the Num interface, such as Integer , Double and countless other types.

It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 8.10.1:

power5 :: Num a ⇒ a → a
power5 n = $(power 5 J n K)

Currently, GHC complains that there is no instance for Num a available, which is strange because

the type signature explicitly states that Num a may be assumed. But this is not the only problem

with this simple example: in the definition of power , the constraint is used inside a quotation but is

bound outside. As we will see, this is an ad-hoc decision that then leads to subtle inconsistencies.

This paper sets out to formally answer the question of how a language with polymorphism

and qualified types should interact with a multi-stage programming language. As well as the

fact that all code generation happens at compile time, these are features that distinguish Typed

Template Haskell, which until now has had no formalism even though it is an extension already

fully integrated into GHC. We extend previous work that looked at cross-stage persistence in this

1
Typed Template Haskell is a variation of the Template Haskell [Sheard and Jones 2002] that adds types in the style of

MetaML [Taha and Sheard 2000]. The abstract datatype Code a in this paper is a newtype wrapper around Q (TExp a). In
GHC, typed quotes are implemented by [|| ||] and typed splices by $$(), rather than J · K and $(·). It was implemented

in 2013 by Geoffrey Mainland (who also used power as a motivating example) under a proposal by Simon Peyton Jones.

2020. 2475-1421/2020/1-ART44 $15.00

https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 44. Publication date: January 2020.

https://doi.org/

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

44:2 Anon.

setting [Pickering et al. 2019a] by more closely modelling the reality of the type system implemented

in GHC. In particular the implications of compile-time code generation are considered, as are the

impredicativity restriction and the interaction with instance definitions.

Providing a formalism for the interaction of polymorphism, qualified types, and multi-stage

programming has important consequences for Typed Template Haskell and other future imple-

mentations that combine these features. This specification resolves the uncertainty about how it

should interact with new language features. It has also been unclear how to fix a large number of

bugs in the implementation because there is no precise semantics it is supposed to operate under.

Presently these deficiencies hampered the adoption of meta-programming in Haskell as a trusted

means of producing code with predictable performance characteristics. This untapped potential

has been demonstrated to be beneficial in other staged systems in MetaML [Taha and Sheard 2000],

Scala’s LMS [Rompf and Odersky 2010], and MetaOCaml [Kiselyov 2014].

At first glance it may appear that constructing programs using only quotations and splices

is restrictive. However, multi-stage programming is widely applicable to any domain in which

statically known abstractions should be eliminated. Some particular examples include removing

the overhead of using parser combinators [Jonnalagedda et al. 2014; Krishnaswami and Yallop 2019;

Willis et al. 2020], generic programming [Yallop 2017] and effect handlers [Schuster et al. 2020].

Furthermore, there are certain interesting techniques and tricks which are useful when constructing

multi-stage programs that can vastly improve performance [Kiselyov 2018; Taha 2004].

Following a brief introduction to staging with Typed Template Haskell (Section 2), this paper

makes the following contributions:

• We demonstrate the problems that arise from the subtle interaction between qualified con-

straints and staging, which highlights the need for a clear specification (Section 3).

• We introduce a type system for a source language which models Typed Template Haskell

and introduces a new constraint form (Section 4).

• We introduce an explicitly typed core language which is System F extended with multi-stage

features (Section 5).

• We give the elaboration semantics from the source language into the core language (Section 6).

Future directions including type inference, the latest developments in supporting impredicativity

and notes about an implementation are then discussed (Section 7). This work is put into the context

of related work (Section 8), before finally concluding (Section 9).

2 BACKGROUND: MULTI-STAGED PROGRAMMING
This section describes the fundamental concepts of Typed Template Haskell as currently im-

plemented in GHC. In these aspects, the current implementation coincides with our proposed

specification of Typed Template Haskell, as we are excluding polymorphism and type classes. This

serves as preparation for more interesting examples that are discussed later (Section 3).

Typed Template Haskell is an extension to Haskell which implements the two standard staging

annotations of multi-stage programming: quotes and splices. An expression e :: a can be quoted

to generate the expression J e K :: Code a. Conversely, an expression c :: Code a can be spliced to

extract the expression $(c). An expression of type Code a is a representation of an expression of

type a. Given these definitions, it may seem that quotes and splices can be used freely so long as

the types align: well-typed problems don’t go wrong, as the old adage says; but things are not so

simple for staged programs. As well as being well-typed, a program must be well-staged, whereby

the level of variables is considered.

The concept of a level is of fundamental importance in multi-stage programming. The level of
an expression is an integer given by the number of quotes that surround it, minus the number of

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 44. Publication date: January 2020.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

A Specification for Typed Template Haskell 44:3

splices: quotation increases the level and splicing decreases the level. Negative levels are evaluated

at compile time, level 0 is evaluated at runtime and positive levels are future unevaluated stages.
2

The goal of designing a staged calculus is to ensure that the levels of the program can be evaluated

in order so that an expression at a particular level can only be evaluated when all expressions it

depends on at previous levels have been first evaluated.

In the simplest setting, a program is well-staged if each variable it mentions is used only at the

level in which it is bound. Doing so in any other stage may simply be impossible, or at least require

special attention. The next three example programs, timely, hasty, and tardy, are all well-typed,
but only the first is well-staged.

Using a variable that was defined in the same stage is permitted. A variable can be introduced

locally using a lambda abstraction inside a quotation and then used freely within that context:

timely :: Code (Int → Int)
timely = J λx → x K

Of course, the variable is still subject to the usual scoping rules of abstraction.

Using a variable at a level before it is bound is problematic because at the point we wish to

evaluate the prior stage, we will not yet know the value of the future stage variable and so the

evaluation will get stuck:

hasty :: Code Int → Int
hasty c = $(c)

Here, we cannot splice c without knowing the concrete representation that c will be instantiated to.

There is no recovery from this situation without violating the fact that lower levels must be fully

evaluated before higher ones.

Using a variable at a stage after it is bound is problematic because the variable will not generally

be in the environment. It may, for instance, be bound to a certain known value at compile time but

no longer present at runtime.

tardy :: Int → Code Int
tardy x = J x K

In contrast to the hasty example, the situation is not hopeless here: there are ways to support

referencing previous-stage variables, which is called cross-stage persistence [Taha and Sheard 1997].

One option is to interpret a variable from a previous stage using a lifting construct which copies

the current value of the variable into a future-stage representation. As the process of lifting is akin

to serialisation, this can be achieved quite easily for base types such as strings and integers, but

more complex types such as functions are problematic.

Another option is to use path-based persistence: for example, a top-level identifier defined in

another module can be persisted, because we can assume that the other module has been separately

compiled, so the top-level identifier is still available at the same location in future stages.

GHC currently implements the restrictions described above. For cross-stage persistence, it

employs both lifting and path-based persistence. Top-level variables defined in another module

can be used at any level. Lifting is restricted to types that are instances of a type class Lift and

witnessed by a method

lift :: Lift a ⇒ a → Code a

2
Unlike MetaML [Taha and Sheard 1997], code generation in Typed Template Haskell is only supported at compile time,

and therefore there is no run operation.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 44. Publication date: January 2020.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

44:4 Anon.

which notably excludes function types and other abstract types such as IO. An example such as

tardy can then be viewed as being implicitly rewritten to

tardy′ :: Int → Code Int
tardy′ x = J $(lift x) K

in which the reference of x occurs at the same level as it is bound. For this reason, our formal

languages introduced in Section 4 and Section 5 will consider path-based persistence, but not

implicit lifting, as this is easy to add separately in the same way as GHC currently implements it.

Let us consider the example from the introduction once again:

power 0 cn = J 1 K
power k cn = J $(cn) ∗ $(power (k − 1) cn) K

This example makes use of quotes and splices. The references to the variables power , k and cn are

all at the same level as their binding occurrence, as they occur within one splice and one quote.

The static information is the exponent k and the run-time information is the base cn. Therefore
by using the staged function the static information can be eliminated by partially evaluating the

function at compile-time by using a top-level splice. The generated code does not mention the

static information.

When using Typed Template Haskell, it is common to just deal with two stages, a compile-time

stage and a run-time stage. The compile-time stage contains all the statically known information

about the domain, the typing rules ensure that information from the run-time stage is not needed

to evaluate the compile-time stage and then the program is partially evaluated at compile-time to

evaluate the compile-time fragment to a value. It is a common misconception that Typed Template

Haskell only supports two stages, but there is no such restriction.
3

3 STAGINGWITH TYPE CLASSES AND POLYMORPHISM
The examples in the previous section were simple demonstrations of the importance of considering

levels in a well-staged program. This section discusses more complicated cases which involve class

constraints, top-level splices, instance definitions and type variables. It is here where our proposed

version of Typed Template Haskell deviates from GHC’s current implementation. Therefore, for

each example we will report how the program should behave and contrast it with how the current

implementation in GHC behaves.

3.1 Constraints
Constraints introduced by type classes have the potential to cause staging errors: type classes

are implemented by passing dictionaries as evidence, and the implicit use of these dictionaries

must adhere to the level restrictions discussed in Section 2. This requires a careful treatment of the

interaction between constraints and staging, which GHC currently does not handle correctly.

Example C1. Consider the use of a type class method inside a quotation, similarly to how power
is used in power5 in the introduction:

c1 :: Show a ⇒ Code (a → String)
c1 = J show K

Thinking carefully about the levels involved, the signature indicates that the evidence for Show a,
which is available at stage 0, can be used to satisfy the evidence needed by Show a at stage 1.

3
There is, however, an artificial restriction about nesting quotation brackets which makes writing programs with more than

two stages difficult. It is ongoing work to lift this restriction.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 44. Publication date: January 2020.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

A Specification for Typed Template Haskell 44:5

In the normal dictionary passing implementation of type classes, type class constraints are

elaborated to a function which accepts a dictionary which acts as evidence for the constraint.

Therefore we can assume that the elaborated version of c1 looks similar to the following:

d1 :: ShowDict a → Code (a → String)
d1 dShow = J show dShow K

Now this reveals a subtle problem: naively elaborating without considering the levels of constraints
has introduced a cross-stage reference where the dictionary variable dShow is introduced at level 0

but used at level 1. As we have learned in Section 2, one remedy of this situation is to try to

make dShow cross-stage persistent by lifting. However, in general, lifting of dictionaries is not

straightforward to implement. Recall that lifting in GHC is restricted to instances of the Lift class

which excludes functions – but type class dictionaries are nearly always a record of functions, so

automatic lifting given the current implementation is not possible.

GHC nevertheless accepts this program, with the underlying problem only being revealed when

subsequently trying to splice the program. We instead argue that the program c1 is ill-typed and

should therefore be rejected at compilation time. Our solution is to introduce a new constraint

form, CodeC C, which indicates that constraint C is available to be used in the next stage. Using

this, the corrected type signature for example C1 is as follows:

c′
1
:: CodeC (Show a) ⇒ Code (a → String)

c′
1
= J show K

The CodeC (Show a) constraint is introduced at level 0 but indicates that the Show a constraint will
be available to be used at level 1. Therefore the Show a constraint can be used to satisfy the show
method used inside the quotation. The corresponding elaborated version is similar to the following:

d ′
1
:: Code (ShowDict a) → Code (a → String)

d ′
1
cdShow = J show $(cdShow) K

As cdShow is now the representation of a dictionary, we can splice the representation inside the

quote. The reference to cdShow is at the correct level and the program is well-staged.

Example C2. The example C1 uses a locally provided constraint which causes us some difficulty.

We have a different situation if a constraint can be solved by a concrete global type class instance:

c2 :: Code (Int → String)
c2 = J show K

In c2, the global Show Int instance is used to satisfy the show constraint inside the quotation. Since

this elaborates to a reference to a top-level instance dictionary, the reference can be persisted using

path-based persistence. Therefore it is permitted to use top-level instances to satisfy constraints

inside a quotation, in the same way that it is permitted to refer to top-level variables.

GHC currently correctly accepts this program. However, it does not actually perform the dic-

tionary translation until the program is spliced, which is harmless in this case, because the same

Show Int instance is in scope at both points.

3.2 Top-level splices
A splice that appears in a definition at the top-level scope of a module

4
introduces new scoping

challenges because it can potentially require class constraints to be used at levels prior to the ones

where they are introduced.

4
Do not confuse this use of “top-level” with the staging level.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 44. Publication date: January 2020.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

44:6 Anon.

Since a top-level splice is evaluated at compile time, it should be clear that no run-time information

must be used in a top-level splice definition. In particular, the definition should not be permitted to

access local variables or local constraints defined at a higher level. This is because local information

which is available only at runtime cannot be used to influence the execution of the expression

during compilation.

Example TS1. In the following example there are two modules. Module A defines the Lift class

and contains the definition of a global instance Lift Int. The lift function from this instance is used

in module B in the definition of ts1, which is a top-level definition. The reference to lift occurs

inside a top-level splice, thus at level −1, and so the Lift Int instance is needed a compile time.

module A where

class Lift a where
lift :: a → Code a

instance Lift Int where
...

module B where
import A

ts1 :: Int
ts1 = $(lift 5)

This program is currently accepted by GHC, and it should be, because the evidence for a top-level

instance is defined in a top-level variable and top-level definitions defined in other modules are

permitted to appear in top-level splices.

The situation is subtly different to top-level quotations as in example C2, because the instance

must be defined in another module which mirrors the restriction implemented in GHC that top-level

definitions can only be used in top-level splices if they are defined in other modules.

Example TS2. On the other hand, constraints introduced locally by a type signature for a top-level
definition must not be allowed. In the following example, the Lift A constraint is introduced at

level 0 by the type signature of ts2 but used at level −1 in the body:

data A = A

ts2 :: Lift A ⇒ A
ts2 = $(lift A)

We assume lift is imported from another module as in Example TS1 and therefore cross-stage

persistent. However, the problem is that the dictionary that will be used to implement the Lift A
constraint will not be known until runtime. Therefore the definition of Lift A is not available to be

used at compile-time in the top-level splice, and GHC correctly rejects this program. It is evident

why this program should be rejected considering the dictionary translation, in a similar vein to C1.

The elaboration would amount to a future-stage reference inside the splice.

Example TS3. So far we have considered the interaction between constraints and quotations

separately to the interaction between constraints and top-level splices. The combination of the two

reveals further subtle issues. The following function ts3 is at the top-level and uses a constrained

type. This example is both well-typed and well-staged.

ts3 :: Ord a ⇒ a → a → Ordering
ts3 = $(J compare K)

In ts3, the body of the top-level splice is a simple quotation of the compare method. This method

requires an Ord constraint which is provided by the context on ts3. The constraint is introduced at

level 0 and also used at level 0, as the top-level splice and the quotation cancel each other out. It is

therefore perfectly fine to use the dictionary passed to ts3 to satisfy the requirements of compare.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 44. Publication date: January 2020.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

A Specification for Typed Template Haskell 44:7

Unfortunately, the current implementation in GHC rejects this program. It generally excludes

local constraints from the scope inside top-level splices, in order to reject programs like Example TS2.

Our specification accepts the example by tracking the levels of local constraints.

3.3 The power function revisited
Having discussed constraints and also their interaction with top-level splices, we can now fully

explain why power5 function discussed in Section 1 works in current GHC when spliced at a

concrete type, but fails when spliced with an overloaded type, whereas it should work for both:

power5 :: Int → Int -- Option M

power5 :: Num a ⇒ a → a -- Option P

power5 n = $(power 5 J n K)

The two problems are that GHC accepts power at the incorrect type

power :: Num a ⇒ Int → Code a → Code a

(as in Example C1) and that it does not actually perform a dictionary translation for this until this

is spliced. Option M works in GHC, because it finds the Num Int global instance when splicing,

similarly to Example TS1, and everything is (accidentally) fine. However, Option P fails because the

local constraint is not made available in the splice as in Example TS2, and even if it was, it would

be a reference at the wrong level.

As with Example C1, we argue that the function power should instead only be accepted at type

power :: CodeC (Num a) ⇒ Int → Code a → Code a

Then, Option M is fine due to the cross-stage persistence of the global Num Int instance declaration;
and Option P works as well, as the program will elaborate to code that is similar to:

power5 ′ :: NumDict a → a → a
power5 ′ dNum n = $(power J dNum K 5 J n K)

By quoting dNum, the argument to power is a representation of a dictionary as required, and

reference is at the correct level.

3.4 Instance Definitions
The final challenge to do with constraints is dealing with instance definitions which use top-level

splices. This situation is of particular interest as there are already special typing rules in GHC for

instance methods which bring into scope the instance currently being defined in the body of the

instance definition. This commonly happens in recursive datatypes where the instance declaration

must be recursively defined.

Example I1. In the same manner as a top-level splice, the body of an instance method cannot use

a local constraint, in particular the instance currently being defined or any of the instance head

in order to influence the code generation in a top-level splice. On the other hand, the generated

code should certainly be permitted to use the instances from the instance context and the currently

defined instance. In fact, this is necessary in order to generate the majority of instances for recursive

datatypes! Here is a instance definition that is defined recursively.

data Stream = Cons {hd :: Int, tl :: Stream}

instance Eq Stream where
s1 = = s2 = hd s1 = = hd s2 && tl s1 = = tl s2

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 44. Publication date: January 2020.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

44:8 Anon.

The instance for Eq Stream compares the tails of the streams using the equality instance for

Eq Stream that is currently being defined. This code works well, as it should, so there is reason to

believe that a staged version should also be definable.

Example I2. The following is just a small variation of Example I1 where the body of the method

is wrapped in a splice and a quote:

instance Eq Stream where
(= =) = $(J λs1 s2 → hd s1 = = hd s2 && tl s1 = = tl s2 K)

This program should be accepted and equivalent to I1, because in general, $(J e K) = e. However, it
is presently rejected by GHC, with the claim that the recursive use of (= =) for comparing the tails is

not stage-correct, when in principle it could and should be made cross-stage persistent.

Example I3. Yet another variant of Example I2 is to try to move the recursion out of the instance

declaration, as follows:

eqStream :: CodeC (Eq Stream) ⇒ Code (Stream → Stream → Bool)
eqStream = J λs1 s2 → hd s1 = = hd s2 && tl s1 = = tl s2 K

Then, in a different module, we should be able to say:

instance Eq Stream where
(= =) = $(eqStream)

It is important that the definition of eqStream uses the new constraint form CodeC (Eq Stream)

so that the definition of eqStream is well-staged. As Eq Stream is the instance which is currently

being defined, the Eq Stream constraint is introduced at level 0 when typing the instance definition.

Therefore, in a top-level splice the local constraint can only be used by functions which require

a CodeC (Eq Stream) constraint. This example is similar to power in Section 3.3 but the local

constraint is introduced implicitly by the instance definition.

It is somewhat ironic that while one of the major use cases of untyped Template Haskell is gen-

erating instance definitions such as this one, it seems impossible to use the current implementation

of Typed Template Haskell for the same purpose.

3.5 Type Variables
The previous examples showed that type constraints require special attention in order to ensure

correct staging. It is therefore natural to consider type variables as well, and indeed previous work

by Pickering et al. [2019a] ensured that type variables are were level-aware in order to ensure a

sound translation. However, our calculus will show that this is a conservative position in a language

based on the polymorphic lambda calculus which enforces a phase distinction [Cardelli 1988] where

typechecking happens entirely prior to running any stages of a program.

Example TV1. Consider the following example that turns a list of quoted values into a quoted

list of those values:

list :: ∀a.[Code a] → Code [a]
list [] = J [] @a K
list (x : xs) = J (:) @a $(x) $(list @a xs) K

The type variable a is bound at level 0 and used both at at level 1 (in its application to the type

constructors), and at level 0 (in its recursive application to the list function). If we took the lead

from values then this program would be rejected by the typechecker. However, because of the

in-built phase distinction, evaluation cannot get stuck on an unknown type variable as all the types

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 44. Publication date: January 2020.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

A Specification for Typed Template Haskell 44:9

will be fixed in the program before execution starts. We just need to make sure that the substitution

operation can substitute a type inside a quotation.

As it happens, this definition is correctly accepted by GHC, which is promising. However, it

cannot actually be used since GHC produces compile error when given an expression such as

$(list [J True K, J False K]), since it complains that the type variable a is not in scope during type

checking, and eventually generates an internal error in GHC itself.

3.6 Intermediate Summary
This section has uncovered the fact that the treatment of constraints is rather arbitrary in the

current implementation of GHC. The examples we discussed have been motivated by three dif-

ferent ad-hoc restrictions that the current implementation exhibits. Firstly, prior stage constraint

references (Section 3.1) are permitted without any checks. Secondly, top-level splices (Section 3.2)

are typechecked in an environment isolated from the local constraint environment which is an

overly conservative restriction. Thirdly, in an instance definition (Section 3.4), any reference to

the instance currently being defined inside a top-level splice is rejected even if it is level-correct.

Additionally we showed that although constraints have a role to play in understanding staging,

type variables need no special treatment beyond the correct use of type application (Section 3.5).

Do the problems uncovered threaten the soundness of the language? In the case of prior-stage

references, they do. The current representation form of quotations in GHC is untyped and therefore

any evidence is erased from the internal representation of a quotation. The instance is therefore

“persisted by inference”, which operates under the assumption that enough information is present in

an untyped representation to re-infer all the contextual type information erased after typechecking.

This assumption leads to unsoundness as generated programs will fail to typecheck, as discussed

already by Pickering et al. [2019a]. Future-stage references are forbidden by conservative checks,

which we will aim to make more precise in our calculus in order to accept more programs.

The problems observed so far are the result of interactions between class constraints and staging.

Our goal now will be to develop a formal calculus to model and resolve these problems. The

approach will be to introduce a source language that includes type constraints in addition to quotes

and splices (Section 4), and a core language that is a variant of the explicit polymorphic lambda

calculus with multi-stage constructs (Section 5). We then show how the source language can be

translated into a core language where constraints have been elaborated away into a representation

form for a quotation that is typed and where all contextual type information is saved (Section 6).

4 SOURCE LANGUAGE
The source language we introduce has been designed to incorporate the essential features of a

language with metaprogramming and qualified types that is able to correctly handle the situations

discussed in Section 3. We try to stay faithful to GHC’s current implementation of Typed Template

Haskell where possible, with the addition of the quoted constraint form CodeC for the reasons

discussed in Section 3. The key features of this language are:

(1) Values and constraints are always indexed by the level at which they are introduced to ensure

that they are well-staged.

(2) The constraint form CodeC indicates that a constraint is available at the next stage.

(3) Types (including type variables) are not level-indexed and can be used at any level.

(4) There is no run operation in the language. All evaluation of code is performed at compile-time

by mean of top-level splices which imply the existence of negative levels.

(5) Path-based cross-stage persistence is supported.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 44. Publication date: January 2020.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

44:10 Anon.

pgm ::= e | def ; pgm | cls; pgm | inst; pgm
def ::= def k = e
cls ::= class TC a where {k :: σ }
inst ::= instance C ⇒ TC τ where {k = e }

e ::= expressions

x | k variables / globals

| λx :τ .e | e e abstraction / application

| J e K | $(e) quotation / splice

τ ::= types

a | H variables / constants

| τ → τ functions

| Code τ representation

ρ ::= τ | C ⇒ ρ qualified types

σ ::= ρ | ∀a.σ quantification

C ::= TC τ | CodeC C constraint / representation

Γ ::= • | Γ, x : (τ , n) | Γ, a | Γ, (C, n) type environment

P ::= • | P, (∀a.C ⇒ C) | P, k :σ program environment

Fig. 1. Source Syntax

These features have been carefully chosen to allow a specification of Typed Template Haskell that

addresses all the shortcomings identified in Section 3 while staying close to the general flavour of

meta-programming that is enabled in its current implementation in GHC.

4.1 Syntax
The syntax of the source language (Figure 1) models programs with type classes and metaprogram-

ming features. This syntax closely follows the models of languages with type classes of Bottu et al.

[2017] and Chakravarty et al. [2005], but with the addition of multi-stage features and without

equality or quantified constraints.

A program pgm is a sequence of value definitions def , class definitions cls, and instance definitions
inst followed by a top-level expression e.
Top-level definitions def are added to the calculus to model separate compilation and path-

based cross-stage persistence in a way similar to what GHC currently implements: only variables

previously defined in a top-level definition can be referenced at arbitrary levels.

Both type classes and instances are in the language, but simplified as far as possible: type class

definitions cls have precisely onemethod and no superclasses; instance definitions inst are permitted

to have an instance context.

The expression language e is a standard λ-calculus with the addition of the two multi-stage

constructs, quotation J e K and splicing $(e) which can be used to separate a program into stages.

Just as in Haskell, our language is predicative: type variables that appear as class parameters and

in quantifiers range only over monotypes. This is modelled by the use of a Damas-Milner style

type system which distinguishes between monotypes τ , qualified types ρ and polytypes σ . The
type argument to the representation constructor Code τ must be a monotype.

A constraint C is either a type class constraint TC τ , or a representation of a constraint CodeC C.
The environment Γ is used for locally introduced information, including value variables x : (τ , n),

type variables a, and local type class axioms (C, n). The environment keeps track of the (integer)

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 44. Publication date: January 2020.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

A Specification for Typed Template Haskell 44:11

level n that value and constraint variables are introduced at; the typing rules ensure that the

variables are only used at the current level.

The program theory P is an environment of the type class axioms introduced by instance

declarations and of type information for names introduced by top-level definitions. The axioms are

used to dictate whether the usage of a type class method is allowed or not. The names indicate

which variables can be used in a cross-stage persistent fashion.

4.2 Typing Rules
The typing rules proceed in a predicable way for anyone familiar with qualified type systems. The

difference is that the source expression typing judgement (Figure 2) and constraint entailment

judgement (Figure 3) are now indexed by a level. Furthermore, since these rules are the basis for elab-

oration into the core language, they have been combined with the elaboration rules, as highlighted

by a grey box whose contents can be safely ignored until the discussion of elaboration (Section 6).

The typing rules also refer to type and constraint formation rules (Figures 8 and 9), which check

just that type variables are well-scoped (our language does not include an advanced kind system).

4.2.1 Levels. A large part of the rules are indexed by their (integer) level. It is standard to index

the expression judgement at a specific level but less standard to index the constraint entailment

judgement. The purpose of the level index is to ensure that expression variables and constraints

can only be used at the level they are introduced. The result is a program which is separated into

stages in such a way that when imbued with operational semantics, the fragments at stage n will

be evaluated before the fragments at stage n + 1.
The full program is checked at level 0. Quotation (E_Quote) increases the level by one and

splicing (E_Splice) decreases the level. It is permitted to reach negative levels in this source language.

The negative levels indicate a stage which should evaluate at compile-time.

In more detail, the consequence of the level-indexing is that:

• A variable can be introduced at any specific level n by a λ-abstraction (E_Abs) and used at

precisely that level (E_Var).

• Variables introduced by top-level definitions can be used at any level (E_Var_TopLevel).

• Type variables can be introduced (E_TAbs) and used at any level (E_TApp).

• Constraints can be introduced at any level (E_C_Abs), but in practice, due to the system being

predicative, this level will always be 0 (see Section 4.2.2). Constraints are also introduced

into the program logic by instance declarations. Constraints are appropriately eliminated

by application (E_C_App). The entailment relation (Figure 3) ensures that a constraint is

available at the current stage.

Note that we do not allow implicit lifting as discussed in Section 2 and implemented in GHC.

Explicit lifting via a Lift class can easily be expressed in this language, and implicit lifting, if desired,

can be orthogonally added as an additional elaboration step.

The rules furthermore implement the top-level splice restriction present in GHC. A top-level

splice will require its body to be at level −1 and thereby rule out the use of any variables defined

outside of the splice, with the exception of top-level variables.

4.2.2 Level of constraints. Inspecting the E_C_Abs rule independently it would appear that a local

constraint can be introduced at any level and then be used at that level. In fact, the E_C_Abs rule can

only ever be applied at level 0 because the E_Quote rule requires that the enclosed expression has

a τ type. This forbids the ρ type as produced by E_C_Abs and more closely models the restriction

to predicative types as present in GHC.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 44. Publication date: January 2020.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

44:12 Anon.

P ; Γ ⊢n e : σ { t | TSP

x : (τ , n) ∈ Γ

P ; Γ ⊢n x : τ { x | •
E_Var

k :σ ∈ P

P ; Γ ⊢n k : σ { k | •
E_Var_TopLevel

P ; Γ, x : (τ1, n) ⊢n e : τ2 { t | TSP Γ ⊢ty τ1 { τ ′
1

P ; Γ ⊢n λx :τ1.e : τ1 → τ2 { λx :τ ′
1
.t | TSP

E_Abs

P ; Γ ⊢n e1 : τ1 → τ2 { t1 | TSP1 P ; Γ ⊢n e2 : τ1 { t2 | TSP2

P ; Γ ⊢n e1 e2 : τ2 { t1 t2 | TSP1 ∪ TSP2
E_App

a < Γ P ; Γ, a ⊢n e : σ { t | TSP

P ; Γ ⊢n e : ∀a.σ { Λa.t | TSP
E_TAbs

P ; Γ ⊢n e : ∀a.σ { t | TSP Γ ⊢ty τ { τ ′

P ; Γ ⊢n e : σ [τ/a] { e ⟨τ ′⟩ | TSP
E_TApp

P ; Γ ⊢n+1 e : τ { t | TSP

P ; Γ ⊢n J e K : Code τ { J t KTSPn | ⌊TSP⌋n
E_Quote

P ; Γ ⊢n−1 e : Code τ { t | TSP fresh sp Γ ⊢ty τ { τ ′ Γ { ∆

P ; Γ ⊢n $(e) : τ { sp | {∆ ⊢ sp :τ ′ = t} ∪n−1 TSP
E_Splice

Γ ⊢ct C { τ P ; Γ, ev : (C, n) ⊢n e : ρ { t | TSP fresh ev

P ; Γ ⊢n e : C ⇒ ρ { λev :τ .t | TSP
E_C_Abs

P ; Γ ⊢n e : C ⇒ ρ { t1 | TSP1 P ; Γ ⊨n C { t2 | TSP2

P ; Γ ⊢n e : ρ { t1 t2 | TSP1 ∪ TSP2
E_C_App

Fig. 2. Source Expression Typing with Elaboration Semantics

The new constraint form CodeC C can be used to allow local constraints to be used at positive

levels in E_C_App. The rules C_Incr and C_Decr in constraint entailment can convert from

CodeC C and C and vice versa. During elaboration, these rules will insert splices and quotes around

the dictionary arguments as needed.

Constraints satisfied by instance declarations can be used at any level by means of C_Global.

Let us illustrate this by revisiting Example C1 and considering the expression J show K. In this

case, we assume the program environment to contain the type of show:

P = •, show :∀a.Show a ⇒ a → String

From this we can use E_Var_TopLevel to conclude that

P ; Γ ⊢1 show : ∀a.Show a ⇒ a → String

Because J show K must have type Code τ for some monotype τ , we cannot apply E_Quote yet, but

must first apply E_TApp and E_C_App. We can conclude

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 44. Publication date: January 2020.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

A Specification for Typed Template Haskell 44:13

P ; Γ ⊨n C { t | TSP

ev : (∀a.Ci ⇒ C) ∈ P Γ ⊢ty τ { τ ′ P ; Γ ⊨n Ci[τ/a] { ti | TSPi

P ; Γ ⊨n C[τ/a] { ev ⟨τ ′⟩ ti |
⋃
i
TSPi

C_Global

ev : (C, n) ∈ Γ

P ; Γ ⊨n C { ev | •
C_Local

P ; Γ ⊨n+1 C { t | TSP

P ; Γ ⊨n CodeC C { J t KTSPn | ⌊TSP⌋n
C_Decr

P ; Γ ⊨n−1 CodeC C { t | TSP Γ ⊢ct C { τ fresh sp Γ { ∆

P ; Γ ⊨n C { sp | {∆ ⊢ sp :τ = t} ∪n−1 TSP
C_Incr

Fig. 3. Source Constraints with Elaboration

P ; Γ ⊢1 show : a → String

if the entailment

P ; Γ ⊨1 Show a

holds. As we do not assume any instances for Show in this example, the constraint can only be

justified via the local environment Γ. Because, as discussed above, any constraint can only have

been introduced at level 0, the only way to move a local constraint from level 0 to level 1 is rule

C_Incr, which requires us to show

P ; Γ ⊨0 CodeC (Show a)

This in turn follows from C_Local if we assume that Γ contains CodeC (Show a):

Γ = •, (CodeC (Show a), 0)

At this point, we know that

P ; Γ ⊢0 J show K : Code (a → String)

and by applying E_C_Abs and E_TAbs, we obtain

P ; • ⊢0 J show K : ∀a.CodeC (Show a) ⇒ Code (a → String)

as desired.

4.2.3 Program Typing. A program (Figure 7) is a sequence of value, class and instances declarations

followed by an expression. The declaration forms extend the program theory which is used to

typecheck subsequent definitions. Value definitions extend the list of top-level definitions available

at all stages. The judgement makes it clear that the top-level of the program is level 0 and that each

expression is checked in an empty local environment.

Class definitions extend the program theory with the qualified class method. Instance definitions

extend the environment with an axiom for the specific instance which is being defined. The rule

checks that the class method is of the type specified in the class definition.

Notice that before the type class method is checked, the local environment Γ is extended with

an axiom for the instance we are currently checking. This is important to allow recursive defi-

nitions (Example I1) to be defined in a natural fashion. The constraint is introduced at level 0,

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 44. Publication date: January 2020.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

44:14 Anon.

pgm | P ⊢def def : P { pgm

P ; • ⊢0 e : σ { t | TSP • ⊢ty σ { τ d = def k :τ = t ds = collapse(−1, TSP, d; pgm)

pgm | P ⊢def def k = e : P, k :σ { ds
Def

Fig. 4. Source Definition Typing with Elaboration

pgm | P ⊢cls cls : P { pgm

•, a ⊢ty σ

pgm | P ⊢cls class TC a where {k :: σ } : P, k :∀a.TC a ⇒ σ { pgm
Cls

Fig. 5. Source Class Typing with Elaboration

pgm | P ⊢inst inst : P { pgm

class TC a where {k :: σ } bj = fv(τ) • ⊢ty σ [τ/a] { τ ′ •, bj ⊢ct Ci { τi

P ; •, bj, ev : (TC τ , 0), (Ci, 0) ⊢0 e : σ [τ/a] { t | TSP

dI = def ev : (∀bj .τi → τ ′) = t ds = collapse(−1, TSP, dI ; pgm) fresh ev

pgm | P ⊢inst instance Ci ⇒ TC τ where {k = e } : P, ev : (∀bj .Ci ⇒ TC τ) { ds
Inst

Fig. 6. Source Instance Typing with Elaboration

the top-level of the program. It is important to introduce the constraint to the local environment

rather than program theory because this constraint should not be available at negative levels. If the

constraint was introduced to the program theory, then it could be used at negative levels, which

would amount to attempting to use the instance in order to affect the definition of said instance.

This nuance in the typing rules explains why Example I2 is accepted and the necessity of the CodeC
constraint in Example I3.

5 THE CORE LANGUAGE
In this section we describe an explicitly typed core language which is suitable as a compilation

target for the declarative source language we described in the Section 4.

5.1 Syntax
The syntax for the core language is presented in Figure 10. It is a variant of the explicit polymorphic

lambda calculus with multi-stage constructs, top-level definitions and top-level splice definitions.

Quotes and splices are represented by the syntactic form J e KSP , which is a quotation with an

associated splice environment which binds splice variables for each splice point within the quoted

expression. A splice point is where the result of evaluating a splice will be inserted. Splice variables

to represent the splice points are bound by splice environments and top-level splice definitions. The

expression syntax contains no splices, splices are modelled using the splice environments which

are attached to quotations and top-level splice definitions.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 44. Publication date: January 2020.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

A Specification for Typed Template Haskell 44:15

P ⊢pgm pgm : σ { pgm

P ; • ⊢0 e : σ { t | TSP • ⊢ty σ { τ p = t :τ ds = collapse(−1, TSP, p)

P ⊢pgm e : σ { ds
P_Expr

P2 ⊢pgm pgm : σ { pgm pgm | P1 ⊢def def : P2 { pgm
1

P1 ⊢pgm def ; pgm : σ { pgm
1

P_Def

P2 ⊢pgm pgm : σ { pgm pgm | P1 ⊢cls cls : P2 { pgm
2

P1 ⊢pgm cls; pgm : σ { pgm
1

P_Cls

P2 ⊢pgm pgm : σ { pgm pgm | P1 ⊢inst inst : P2 { pgm
1

P1 ⊢pgm inst; pgm : σ { pgm
1

P_Inst

Fig. 7. Source Program Typing with Elaboration

Γ ⊢ty σ { τ

a ∈ Γ

Γ ⊢ty a { a
T_Var

Γ ⊢ty H { H
T_Const

Γ ⊢ty τ1 { τ ′
1

Γ ⊢ty τ2 { τ ′
2

Γ ⊢ty τ1 → τ2 { τ ′
1
→ τ ′

2

T_Arrow

Γ ⊢ct C { τ1 Γ ⊢ty ρ { τ2

Γ ⊢ty C ⇒ ρ { τ1 → τ2
T_CArrow

Γ, a ⊢ty σ { τ

Γ ⊢ty ∀a.σ { ∀a.τ
T_For_All

Γ ⊢ty τ { τ ′

Γ ⊢ty Code τ { Code τ ′
T_Code

Fig. 8. Source Type Formation with Elaboration

Γ ⊢ct C { τ

class TC a where {k :: σ } Γ ⊢ty σ [τ/a] { τ ′

Γ ⊢ct TC τ { τ ′
C_TC

Γ ⊢ct C { τ

Γ ⊢ct CodeC C { Code τ
C_CodeC

Fig. 9. Source Constraint Formation with Elaboration

The splice environment maps a splice point sp to a local type environment ∆, a type τ and an

expression e which we write as ∆ ⊢ sp :τ = e . The typing rules will ensure that the expression e
has type Code τ . The purpose of the environment ∆ is to support open code representations which

lose their lexical scoping when lifted from the quotation.

A top-level splice definition is used to support elaborating from negative levels in the source

language. These top level declarations are of the form spdef ∆ ⊢n sp :τ = e which indicates that

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 44. Publication date: January 2020.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

44:16 Anon.

the expression e will have type Code τ at level n in environment ∆. Top-level splice definitions also
explicitly record the level of the original splice so that the declaration can be typechecked at the

correct level. The level index is not necessary for the quotation splice environments because the

level of the whole environment is fixed by the level at which the quotation appears.

5.2 Typing Rules
The expression typing rules for the core language are for the most part the same as those in the

source language. The rules that differ are shown in Figure 11.

The splice environment typing rules are given in Figure 12. A splice environment is well-typed

if each of its definitions is well-typed. We check that the body of each definition has type Code τ
in an environment extended by ∆. In the E_Quote rule, the body of the quotation is checked in

an environment Γ extended with the contents of the splice environment. A splice variable sp is

associated with an environment ∆, a type τ and a level n in Γ. When a splice variable is used, the

E_Splice_Var rule ensures that the claimed local environment aligns with the actual environment,

the type of the variable is correct and the level matches the surrounding context.

Top-level splice definitions are typed in a similar manner in Figure 13. The body of the definition

is checked to have type Code τ at level n in environment Γ, the program theory is then extended

with a splice variable sp : (Γ, τ) which can be used in the remainder of the program.

5.3 Dynamic Semantics
The introduction of splice environments makes the evaluation order of the core calculus evident

and hence a suitable target for compilation.

Usually in order to ensure a well-staged evaluation order, the reduction relation must be level-

indexed to evaluate splices inside quotations. In our calculus, there is no need to do this because

the splices have already been lifted outside of the quotation during the elaboration process. This

style is less convenient to program with, but easy to reason about and implement.

In realistic implementations, the quotations are compiled to a representation form for which

implementing substitution can be difficult. By lifting the splices outside of the representation, the

representation does not need to be inspected or traversed before it is spliced back into the program.

The representation can be treated in an opaque manner which gives us more implementation

freedom about its form. In our calculus this is evidenced by the fact there is no reduction rule which

reduces inside a quotation.

The program evaluation semantics evaluate each declaration in turn from top to bottom. Top-

level definitions are evaluated to values and substituted into the rest of the program. Top-level

splice definitions are evaluated to a value of type Code τ which has the form J e KSP . The splice
variable is bound to the value e with the substitution SP applied and then substituted into the

remainder of the program.

Using splice environments and top-level splice definitions is reminiscent of the approach taken

in logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

5.4 Module Restriction
In GHC, the module restriction dictates that only identifiers bound in other modules can be used

inside top-level splices. This restriction is modelled in our calculus by the restriction that only

identifiers previously bound in top-level definitions can be used inside a top-level splice. The

intention is therefore to consider each top-level definition to be defined in its own “module” which

is completely evaluated before moving onto the next definition.

This reflects the situation in a compiler such as GHC which supports separate compilation. When

compiling a program which uses multiple modules, one module may contain a top-level splice

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 44. Publication date: January 2020.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

A Specification for Typed Template Haskell 44:17

pgm ::= e :τ | def ; pgm | spdef ; pgm

def ::= def k :τ = e
spdef ::= spdef ∆ ⊢n sp :τ = e

e, t ::= elaborated expressions

x | sp | k variables / splice variables / globals

| λx :τ .e | e e abstraction / application

| Λa.e | e ⟨τ ⟩ type abstraction / application

| J e KSP quotation

SP ::= • | SP,∆ ⊢ sp :τ = e splice environment

τ ::= core types

a | H variables / constants

| τ → τ functions

| Code τ representation

| ∀a.τ quantification

Γ,∆ ::= • | Γ, x : (τ , n) | Γ, sp : (∆, τ , n) | Γ, a type environment

P ::= • | P, k :τ | P, sp : (∆, τ) program environment

Fig. 10. Core Language Syntax

which is then used inside another top-level splice in a different module. Although syntactically

both top-level splices occur at level −1, they effectively occur at different stages. In the same way

as different modules occur at different stages due to separate compilation, in our calculus, each

top-level definition can be considered to be evaluated at a new stage.

At this point it is worthwhile to consider what exactly we mean by compile-time and run-time.

So far we have stated that the intention is for splices at negative levels to represent compile-time

evaluation so we should state how we intend this statement to be understood in our formalism.

The elaboration procedure will elaborate each top-level definition to zero or more splice definitions

(one for each top-level splice it contains) followed by a normal value definition. Then, during

the evaluation of the core program the splice definitions will be evaluated prior to the top-level

definition that originally contained them.

The meaning of “compile-time” is therefore that the evaluation of the top-level splice happens

before the top-level definition is evaluated. It is also possible to imagine a semantics which partially

evaluates a program to a residual by computing and removing as many splice definitions as possible.

If we were to more precisely model a module as a collection of definitions then the typing rules

could be modified to only allow definitions from previously defined modules to be used at the

top-level and all splice definitions could be grouped together at the start of a module definition

before any of the value definitions. Then it would be clearly possible to evaluate all of the splice

definitions for a module before commencing to evaluate the module definitions.

6 ELABORATION
In this section we describe the process of elaboration from the source language to the core language.

Elaboration starts from a well-typed term in the source language and hence is defined by induction

over the typing derivation tree (Figure 2).

6.1 Elaboration procedure
There are three key aspects of the elaboration procedure:

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 44. Publication date: January 2020.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

44:18 Anon.

P ; Γ ⊢n e : τ

∆ ⊢ sp : (τ , n) ∈ Γ ∆ ⊆ Γ

P ; Γ ⊢n sp : τ
E_Splice_Var

sp : (∆, τ) ∈ P ∆ ⊆ Γ

P ; Γ ⊢n sp : τ
E_Top_Splice_Var

P ; Γ, a ⊢n e : τ

P ; Γ ⊢n Λa.e : ∀a.τ
E_TAbs

P ; Γ ⊢n e : ∀a.τ2
P ; Γ ⊢n e ⟨τ1⟩ : τ2[τ1/a]

E_TApp

P ; Γ, spi : (∆i, τi, n + 1) ⊢n+1 e : τ P ; Γ ⊢nSP SP SP = ∆i ⊢ spi :τi = ei
P ; Γ ⊢n J e KSP : Code τ

E_Quote

Fig. 11. Core Expression Typing

P ; Γ ⊢nSP SP

P ; Γ ⊢nSP •
SP_Empty

P ; Γ ⊢nSP SP P ; Γ,∆ ⊢n e : Code τ

P ; Γ ⊢nSP SP,∆ ⊢ sp :τ = e
SP_Cons

Fig. 12. Splice Environment Typing

P ⊢def def : P

P ; • ⊢0 e : τ

P ⊢def def k :τ = e : P, k :τ
C_Def

P ⊢spdef spdef : P

P ; Γ ⊢n e : Code τ

P ⊢spdef spdef Γ ⊢n sp :τ = e : P, sp : (Γ, τ)
C_SpDef

Fig. 13. Core Definition Typing

P ⊢pgm pgm

P ; • ⊢0 e : τ

P ⊢pgm e :τ
CP_Main

P1 ⊢def def : P2 P2 ⊢pgm pgm

P1 ⊢pgm def ; pgm
CP_Def

P1 ⊢spdef spdef : P2 P2 ⊢pgm pgm

P1 ⊢pgm spdef ; pgm
CP_SpDef

Fig. 14. Core Program Typing

e { e

e1 { e′
1

e1 e2 { e′
1
e2

D_E_App_L

e2 { e′
2

e1 e2 { e1 e′2
D_E_App_R

(λx :τ .e) v { e[v/x]
D_E_Beta

e { e′

e ⟨τ ⟩ { e′ ⟨τ ⟩
D_E_TApp

(Λa.e) ⟨τ ⟩ { e[τ/a]
D_E_TBeta

SP { SP ′

J e KSP { J e KSP′
D_E_Quote

Fig. 15. Dynamic Semantics

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 44. Publication date: January 2020.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

A Specification for Typed Template Haskell 44:19

SP { SP

SP { SP ′

SP,∆ ⊢ sp :τ = e { SP ′,∆ ⊢ sp :τ = e
D_SP_Body

e { e′

SP,∆ ⊢ sp :τ = e { SP,∆ ⊢ sp :τ = e′
D_SP_Cons

Fig. 16. Dynamic Semantics for Splice Environment

def { def

e { e′

def k :τ = e { def k :τ = e′
D_Def

spdef { spdef

e { e′

spdef Γ ⊢n sp :τ = e { spdef Γ ⊢n sp :τ = e′
D_SpDef

Fig. 17. Dynamic Semantics for Definitions

pgm { pgm

def { def ′

def ; pgm { def ′; pgm
D_P_Def

spdef { spdef ′

spdef ; pgm { spdef ′; pgm
D_P_SpDef

e { e′

e :τ { e′ :τ
D_P_Main

def k :τ = v; pgm { pgm[v/k]
D_P_Def_Beta

spdef ∆ ⊢n sp :τ = J e KSP ; pgm { pgm[e[SP]/sp]
D_P_SpDef_Beta

Fig. 18. Dynamic Semantics for Program

(1) Splices at positive levels are removed in favour of a splice environment. The elaboration

process returns a splice environment which is attached to the quotation form.

(2) Splices at non-positive levels are elaborated to top-level splice definitions, which are bound

prior to the expression within which they were originally contained.

(3) Type class constraints are converted to explicit dictionary passing. We describe how to

understand the new constraint form CodeC C in terms of quotation.

In order to support elaboration, all implicit evidence from the program theory and local environ-

ment are annotated with variables. The idea is that in the elaborated program, the evidence for

each particular construct will be bound to a variable of that name. Top-level evidence by top-level

variables and local evidence by λ-bound variables. The modifications to the typing rules for the

source language syntax necessary in order to explain elaboration are highlighted by a grey box.

Γ ::= • | Γ, x : (τ , n) | Γ, a | Γ, ev : (C, n) type environment

P ::= • | P, ev : (∀a.C ⇒ C) | P, k :σ program environment

The judgement P ; Γ ⊢n e : τ { t | TSP states that in program theory P and environment Γ, the

expression e has type τ at level n and elaborates to term t whilst producing splices TSP .

6.2 Splice Elaboration
The TSP is a function from a level to a splice environment SP . In many rules, we perform level-

pointwise union of produced splices, written ∪.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 44. Publication date: January 2020.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

44:20 Anon.

During elaboration, all splices are initially added to the TSP at the level of their contents, so a

splice that occurs at level n is added at level n−1 by means of the operation ∪n−1 as in rule E_Splice.

What happens with the splices contained in the TSP depends on their level. If they occur at a

positive level, they will be bound by a surrounding quotation in rule E_Quote. The notation TSPn
denotes the projection of the splices contained in TSP at level n. They become part of the splice

environment associated with the quotation. Via ⌊TSP⌋n, we then truncate TSP so that it is empty at

level n and above.

If a splice occurs at non-positive level, it is a top-level splice and will become a top-level splice

definition in rules Def or Inst, in such a way that the splice definitions are made prior to the

value definition which yielded them. The splice definitions are created by the collapse judgement

(Figure 19), which takes a splice environment returned by the expression elaboration judgement

and creates top-level splice declarations for each negative splice which appeared inside a term. To

guarantee a stage-correct execution, the splices are inserted in order of their level.

We maintain the invariant on the TSP where it only contains splices of levels prior to the current

level of the judgement. Therefore, when the judgement level decreases as in E_Quote, the splices

for that level are removed from the splice environment and bound at the quotation. As the top-level

of the program is at level 0, the splice environment returned by an elaboration judgement at level 0

will only contain splices at negative levels, which is why the appeal to the collapse function starts

from level −1.

6.3 Constraint Elaboration
The second point of interest are the constraint elaboration rules given in Figure 3. Since in our

language type classes have just a single method, we use the function corresponding to the method

itself as evidence for a class instance in rule Inst.

Constraints of the new constraint form CodeC C are elaborated into values of type Code τ .
Therefore inspecting the entailment elaboration form C_Decr and C_Incr must be understood

in terms of quotation. The C_Decr entailment rule is implemented by a simple quotation and

thus similar to E_Quote. The C_Incr rule is conceptually implemented using a splice, but as

the core language does not contain splices it is understood by adding a new definition to the

splice environment, which mirrors E_Splice. These rules explains the necessity of level-indexing

constraints in the source language; the elaboration would not be well-staged if the stage discipline

was not enforced.

The remainder of the elaboration semantics which elaborate the simple terms and constraint

forms are fairly routine.

6.4 Example
As an example of elaboration, let us consider the expression $(c′

1
) where c′

1
= J show K from

Example C1. There are two points of interest here: there is a top-level splice which will be floated

to a top-level splice definition, and the CodeC (Show a) constraint of c′
1
must be elaborated into

quoted evidence using rule C_Decr.

We assume that the program environment contains c′
1
:

P = •, c′
1
:∀a.CodeC (Show a) ⇒ Code (a → String)

As our program comprises a single main expression, we have to use rule P_Expr. This rule requires

us to first elaborate the expression itself at level 0 in an empty type environment. We obtain

P ; • ⊢0 $(c′
1
) : ∀a.Show a ⇒ a → String

{ Λa.λev :a → String.sp | {∆ ⊢ sp :a → String = c′
1
⟨a⟩ J ev K•} ∪−1 •

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 44. Publication date: January 2020.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

A Specification for Typed Template Haskell 44:21

collapse(n, TSP, pgm) = ds

collapse(n, •, pgm) = pgm
C_Empty

ds = collapse(n − 1, ⌊TSP⌋n, spdefi ; pgm) spdefi = spdef ∆i ⊢n spi :τi = ei
TSPn = ∆i ⊢ spi :τi = ei

collapse(n, TSP, pgm) = ds
C_Strip

Fig. 19. Definition of collapse

Γ { ∆

• { •
TE_Empty

Γ { ∆ Γ ⊢ty τ { τ ′

Γ, x : (τ , n) { ∆, x : (τ ′, n)
TE_Var

Γ { ∆

Γ, a { ∆, a
TE_TyVar

Γ { ∆ Γ ⊢ct C { τ

Γ, ev : (C, n) { ∆, ev : (τ , n)
TE_Ctx

Fig. 20. Elaboration of Type Environments

where

∆ = •, a, ev : (a → String, 0)

The splice point sp has been introduced for the splice via rule E_Splice. Evidence for the Show
constraint is introduced into the type environment at level 0 via rule E_C_Abs. It is captured in ∆
for use in the splice. Because the use of the evidence occurs at level −1 and the required constraint

is CodeC Show, rule C_Decr is used to quote the evidence. The splice environment attached to the

quote is empty, because there are no further splices.

Back to rule P_Expr, we furthermore obtain that the resulting main expression is of the form

p = Λa.λev :a → String.sp :∀a.(a → String) → a → String

The type of p results from elaborating the original Show a constraint to the type of its method

a → String via the rule C_TC. We can now look at collapse and observe that it will extract the one

splice at level −1 passed to it into a top-level splice definition that ends up before d, the result being

spdef ∆ ⊢−1 sp :a → String = c′
1
⟨a⟩ J ev K•; p

The operational semantics for the language evaluates the definition of sp first to a quotation before

the quoted expression is substituted into the remainder of the program so that evaluation can

continue.

7 PRAGMATIC CONSIDERATIONS
Now that the formal developments are complete and the relationship between the source language

and core language has been established by the elaboration semantics, it is time to consider how our

formalism interacts with other language extensions, and to discuss implementation issues.

7.1 Integration into GHC
The implementation and integration of this specification into GHC’s sophisticated architecture

naturally requires certain design decisions to be made, which we now discuss.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 44. Publication date: January 2020.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

44:22 Anon.

7.1.1 Type Inference. Type inference for our new constraint form should be straightforward to

integrate into the constraint solving algorithm used in GHC [Vytiniotis et al. 2011]. The key

modification is to keep track of the level of constraints and only solve goals with evidence at the

right level. If there is no evidence available for a constraint at the correct level, then either the

C_Incr or C_Decr rule can be invoked in order to correct the level of necessary evidence.

7.1.2 Substituting Types. Substituting inside quotations poses some implementation challenges

depending on the quotation representation. In previous implementations which used low-level

representations to represent quotations [Pickering et al. 2019a; Roubinchtein 2015] the solution

was to maintain a separate environment for free variables which can be substituted into without

having to implement substitution in terms of the low-level representation. The idea is then that by

the time the low-level representation is evaluated all the variables bound in the environment are

already added to the environment and so computation can proceed as normal when it encounters

what was previously a free variable.

Therefore we should treat every free type variable in a quotation as a splice point, create an

environment to attach to the quotation which maps the splice point to the variable of the name

and then when the quotation is interpreted substitute the type into the quotation.

7.1.3 Erasing Types. The operational semantics of System F do not depend on the type information

and so the types can be erased before evaluation. It is this observation that leads us to accept

Example TV1. However, there is another point in the design space – we could have elaborated to

an erased version of System F where types were replaced by placeholders. This would save us the

complications of having to substitute types inside quotations. However, the option of maintaining

the type information is important for practical purposes. GHC has an optional internal typechecking

phase called core lint which verifies the correctness of code generation and optimisation, it would

be a shame to lose this pass in any program which used metaprogramming. In a language where

the type information dwarfs the runtime content of terms, it would be desirable to also explore the

option to store erased or partially erased terms [Brady et al. 2003; Jay and Peyton Jones 2008].

7.1.4 Cross-Stage Persistence. Earlier work on cross-stage persistence [Pickering et al. 2019a] has

suggested that implementing cross-stage persistence for instance dictionaries should be possible

because a dictionary was ultimately a collection of top-level functions so some special logic could

be implemented in the compiler to lift a dictionary.

Additional complexity arises when functions with local constraints are passed an arbitrary

dictionary which could have been constructed from other dictionaries, which in turn come from

dictionaries. At the point the dictionary is passed, the required information about its structure has

been lost so it is impossible to interpret into a future stage. A solution to this could be to use a

different evidence form which passes the derivation tree for a constraint to a function as evidence

before the function constructs the required dictionary at the required stage. This would increase

the runtime overhead of using type classes and would not be practical to implement.

7.2 Interaction with Existing Features
So far we have considered how metaprogramming interacts with qualified types, but of course

there are other features that are specific to GHC that need to be considered.

7.2.1 GADTs. Local constraints can be introduced by pattern matching on a GADT. For simplicity

our calculus did not include GADTs or local constraints but they require similar treatment to other

constraints introduced locally. The constraint solver needs to keep track of the level that a GADT

pattern match introduces a constraint and ensure that the constraint is only used at that level.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 44. Publication date: January 2020.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

A Specification for Typed Template Haskell 44:23

Note that this notion of a “level” is the stage of program execution where the constraint is

introduced and not the same idea of a level the constraint solver uses to prevent existentially

quantified type variables escaping their scope. Each nested implication constraint increases the

level so type variables introduced in an inner scope are forbidden from unifying with type variables

which are introduced at a previous level.

7.2.2 Quantified Constraints. The quantified constraints extension [Bottu et al. 2017] relaxes the

form of the constraint schemes allowed in method contexts to also allow the quantified and implica-

tion forms which in our calculus are restricted to top-level axioms. Under this restriction there are

some questions about how the CodeC constraint form should interact especially with implication

constraints. In particular, whether constraint entailment should deduce that CodeC (C1 ⇒ C2)

entails CodeC C1 ⇒ CodeC C2 or the inverse and what consequences this has for type inference

involving these more complicated constraint forms.

7.3 Interaction with Future Features
GHC is constantly being improved and extended to encompass new and ambitious features, and so

we consider how metaprogramming should interact with features that are currently in the pipeline.

7.3.1 Impredicativity. For a number of the examples that we have discussed in this paper, an

alternative would be to use impredicative instantiation to more precisely express the binding

position of a constraint. For instance, the function c1 :: Show a ⇒ Code (a → String) from
Example C1 might instead have been expressed in the following manner:

c′
1
:: Code (∀a.Show a ⇒ a → String)

c′
1
= J show K

The type of c′
1
now binds and uses the Show a constraint at level 1 without the use of CodeC.

However, despite many attempts [Peyton Jones et al. 2007], GHC has never properly supported

impredicative instantiation due to complications with type inference. Recent work [Serrano et al.

2020, 2018] has proposed the inclusion of restricted impredicative instantiations, and these would

accept c′
1
. In any case, impredicativity is not a silver bullet, and there is still a need for the CodeC con-

straint form. Without the CodeC constraint form there is no way to manipulate “open” constraints.

That is, constraints which elaborate to quotations containing free variables.

Experience has taught us that writing code generators which manipulate open terms is a lot more

convenient than working with only closed terms. We predict that the same will be true of working

with the delayed constraint form as well. In particular, features such as super classes, instance

contexts and type families can be used naturally with CodeC constraints. So whilst relaxing the

impredicativity restriction will have some positive consequences to the users of Typed Template

Haskell, it does not supersede our design but rather acts as a supplement.

7.3.2 Dependent Haskell. Our treatment of type variables is inspired by the in-built phase distinc-

tion of System F. As Haskell barrels at an impressive rate to a dependently typed language [Eisenberg

2016; Gundry 2013], the guarantees of the phase distinction will be lost in some cases. At this point

it will be necessary to revise the specification in order to account for the richer phase structure.

The specification for Dependent Haskell [Weirich et al. 2017] introduces the so-called relevance

quantifier in order to distinguish between relevant and irrelevant variables. The irrelevant quantifier

is intended to model a form of parametric polymorphism like the ∀ in System F, the relevant

quantifier is written as Π after the dependent quantifier from dependent type theory.

Perhaps it is sound to modify their system in order to enforce the stage discipline for relevant

type variables not irrelevant ones. It may be that the concept of relevance should be framed in

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 44. Publication date: January 2020.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

44:24 Anon.

terms of stages, where the irrelevant stage proceeds all relevant and computation stages – in which

case it might be desirable to separate the irrelevant stage itself into multiple stages which can be

evaluated in turn. The exact nature of this interaction is left as a question for future work.

8 RELATEDWORK
Multi-stage languages with explicit staging annotations were first suggested by Taha and Sheard

[1997, 2000]. Since then there has been a reasonable amount of theoretical interest in the topic

which has renewed in recent years. There are several practical implementations of multi-stage

constructs in mainstream programming languages such as BER MetaOCaml [Kiselyov 2014], Typed

Template Haskell and Dotty [Stucki et al. 2018].

At a first glance there is surprisingly little work which attempts to reconcile multi-stage program-

ming with language features which include polymorphism. Most presented multi-staged calculi are

simply typed despite the fact that all the languages which practically implement these features

support polymorphism. The closest formalism is by Kokaji and Kameyama [2011] who consider

a language with polymorphism and control effects. Their calculus is presented without explicit

type abstraction and application. There is no discussion about cross-stage type variable references

or qualified types and their primary concern, similar to Kiselyov [2017] is the interaction of the

value restriction and staging. Our calculus in contrast, as it models Haskell, does not contain any

effects so we have concentrated on qualified types. Calcagno et al. [2003] present a similar ML-like

language with let-generalisation.

Combining together dependent types and multi-stage features is a more common combination.

The phase distinction is lost in most dependently typed languages as the typechecking phase

involves evaluating expressions. Therefore in order to ensure a staged evaluation, type variables

must also obey the same stage discipline as value variables. This is the approach taken by Kawata

and Igarashi [2019]. Pašalic [2004] defines the dependently-typed multi-stage language Meta-D but

doesn’t consider constraints or parametric polymorphism. Concoqtion [Fogarty et al. 2007] is an

extension to MetaOCaml where Coq terms appear in types. The languge is based on λH⃝ [Pašalic

et al. 2002] which includes dependent types but is motivated by removing tags in the generated

program. Brady and Hammond [2006] observe similarly that it is worthwhile to combine together

depedent types and multi-stage programming to turn a well-typed interpreter into a verified

compiler. The language presented does not consider parametric polymorphism nor constraints.

We are not aware of any prior work which considers the implications of relevant implicit

arguments formally, although there is an informal characterization by Pickering et al. [2019a].

Formalising Template Haskell. With regards to formalisms of Template Haskell, a brief description

of Untyped Template Haskell is given by Sheard and Jones [2002]. The language is simply-typed

and does not account for multiple levels. The language has also diverged since their formalism as

untyped quotations are no longer typechecked before being converted into their representation.

Their formalism does account for the Q monad which provides operations that allow a programmer

to “reify” types, declarations and so on in order to inspect the internal structure. These are typically

used in untyped Template Haskell in order to generically define instances or other operations.

It is less common to use the reification functions in Typed Template Haskell programs and so we

have avoided their inclusion in our formalism for the sake of simplicity. In our calculus we wanted

to precisely understand the basic interaction between constraints and quotations, and the existence

of the Q monad is orthogonal to this.

Code generators are typically effectful in order to support operations such as let insertion or

report errors so it is an important question to define a calculus with effects. From GHC 8.12, the

type of quotations will be generalised [Pickering 2019] from Q (TExp a) to a minimal interface

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 44. Publication date: January 2020.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

A Specification for Typed Template Haskell 44:25

∀m.Quote m ⇒ m (TExp a) so a user will have more control over which effects they are allowed to

use in their code generators. We leave formalising this extension open to future work.

Metaprogramming In GHC. GHC implements many different forms of metaprogramming from the

principled to the ad-hoc. At the principled end of the spectrum in a similar vein as Typed Template

Haskell there is Cloud Haskell [Epstein et al. 2011], which implements a modality for distributed

computing. Another popular principled style is generic programming [Magalhães et al. 2010;

Rodriguez et al. 2008] which allows the representation of datatypes to be inspected and interpreted

at runtime. Untyped Template Haskell is used for untyped code generation in the combinator

style. As well as generating expressions it can be used to generate patterns, declarations and types.

Programs are typechecked after being generated rather than typechecking the generators as in

Typed Template Haskell. Untyped Template Haskell has a limited interface into the typechecker but

Source Plugins [Pickering et al. 2019b] allow unfettered access to the internal state and operations

of the typechecker and other compiler phases.

Modal Type Systems. Type systemsmotivated bymodal logics havemore commonly contemplated

the interaction of modal operators and polymorphism. In particular attention has turned recently

to investigating dependent modal type theories and the complex interaction of modal operators

in such theories [Gratzer et al. 2020]. It seems probable that ideas from this line of research can

give a formal account of the interaction of the code modality [Davies and Pfenning 2001] and the

parametric quantification from System F which can also be regarded as a modality [Nuyts and

Devriese 2018; Pfenning 2001].

In recent times, Fitch-Style Modal calculi [Clouston 2018; Gratzer et al. 2019] have become a

popular way of specifying a modal type system due to their good computational properties. It

would be interesting future work to attempt to modify our core calculus to a Fitch-Style system

which was not level indexed. In particular the calculus for Simple RaTT [Bahr et al. 2019] looks

like a good starting point.

In short, we are sure there is a lot to learn from the vast amount of literature on modal type

systems but we are not experts in this field and the literature does not deal with our practical

concerns regarding implementing and writing programs in staged programming languages. The

goal of this paper was not to uncover a logically inspired programming language but to give a

practical and understandable practical specification which can be understood by people without

extensive background in modal type theories.

9 CONCLUSION
Now that we have presented the first formalism of Typed Template Haskell, the way is clear

for future researchers to understand and extend the basic system. We envisage that the system

will be useful for two different communities. Firstly, researchers into extensions such as Linear

Haskell [Bernardy et al. 2017] and Dependent Haskell [Weirich et al. 2017] now have the possibility

to consider how their features interact with stages so that the language remains sound with respect

to staged evaluation. Secondly, users interested in multi-stage programming now have a firmer

foundation to base further extensions to the multi-stage features in GHC.

In the long-term our hope is to make multi-stage programming a more popular and accessible

paradigm for functional programmers. Even with the present implementation of Typed Template

Haskell, Yallop et al. [2018] have shown how different features implemented in GHC can be used

together in order to express elegant code generators. We anticipate that a firm foundation for Typed

Template Haskell that supports finer control over the type of qualified constraints will enable more

practitioners to explore this unexplored territory, and begin to reach for staging as a useful tool in

their toolbox of techniques to enhance the predictability and performance of their code.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 44. Publication date: January 2020.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

44:26 Anon.

REFERENCES
Patrick Bahr, Christian Uldal Graulund, and Rasmus Ejlers Møgelberg. 2019. Simply RaTT: A Fitch-Style Modal Calculus

for Reactive Programming without Space Leaks. Proc. ACM Program. Lang. 3, ICFP, Article 109 (July 2019), 27 pages.

https://doi.org/10.1145/3341713

Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R. Newton, Simon Peyton Jones, and Arnaud Spiwack. 2017. Linear

Haskell: Practical Linearity in a Higher-Order Polymorphic Language. Proc. ACM Program. Lang. 2, POPL, Article 5 (Dec.
2017), 29 pages. https://doi.org/10.1145/3158093

Gert-Jan Bottu, Georgios Karachalias, Tom Schrijvers, Bruno C. d. S. Oliveira, and Philip Wadler. 2017. Quantified Class

Constraints. In Proceedings of the 10th ACM SIGPLAN International Symposium on Haskell (Oxford, UK) (Haskell 2017).
Association for Computing Machinery, New York, NY, USA, 148–161. https://doi.org/10.1145/3122955.3122967

Edwin Brady and Kevin Hammond. 2006. A Verified Staged Interpreter is a Verified Compiler. In Proceedings of the 5th
International Conference on Generative Programming and Component Engineering (Portland, Oregon, USA) (GPCE ’06).
Association for Computing Machinery, New York, NY, USA, 111–120. https://doi.org/10.1145/1173706.1173724

Edwin Brady, Conor McBride, and James McKinna. 2003. Inductive families need not store their indices. In International
Workshop on Types for Proofs and Programs. Springer, 115–129. https://doi.org/10.1007/978-3-540-24849-1_8

Cristiano Calcagno, Walid Taha, Liwen Huang, and Xavier Leroy. 2003. Implementing multi-stage languages using ASTs,

Gensym, and reflection. In Proceedings of the 2nd international conference on Generative programming and component
engineering (Erfurt Germany) (GPCE03). Association for Computing Machinery, 57–76. https://doi.org/10.5555/954186.

954190

Luca Cardelli. 1988. Phase distinctions in type theory. Unpublish Manuscript.

Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyton Jones. 2005. Associated Type Synonyms. SIGPLAN Not. 40, 9
(Sept. 2005), 241–253. https://doi.org/10.1145/1090189.1086397

Ranald Clouston. 2018. Fitch-style modal lambda calculi. In International Conference on Foundations of Software Science and
Computation Structures. Springer, 258–275. https://doi.org/10.1007/978-3-319-89366-2_14

Rowan Davies and Frank Pfenning. 2001. A Modal Analysis of Staged Computation. J. ACM 48, 3 (May 2001), 555–604.

https://doi.org/10.1145/382780.382785

Richard A Eisenberg. 2016. Dependent types in Haskell: Theory and practice. University of Pennsylvania.

Jeff Epstein, Andrew P. Black, and Simon Peyton Jones. 2011. Towards Haskell in the Cloud. In Proceedings of the 4th ACM
Symposium on Haskell (Tokyo, Japan) (Haskell ’11). ACM, New York, NY, USA, 118–129. https://doi.org/10.1145/2034675.

2034690

Seth Fogarty, Emir Pasalic, Jeremy Siek, and Walid Taha. 2007. Concoqtion: Indexed Types Now!. In Proceedings of the 2007
ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation (Nice, France) (PEPM ’07).
Association for Computing Machinery, New York, NY, USA, 112–121. https://doi.org/10.1145/1244381.1244400

Daniel Gratzer, GA Kavvos, Andreas Nuyts, and Lars Birkedal. 2020. Multimodal Dependent Type Theory. (2020). In

submission.

Daniel Gratzer, Jonathan Sterling, and Lars Birkedal. 2019. Implementing a Modal Dependent Type Theory. Proc. ACM
Program. Lang. 3, ICFP, Article 107 (July 2019), 29 pages. https://doi.org/10.1145/3341711

Adam Gundry. 2013. Type inference, Haskell and dependent types. Ph.D. Dissertation. University of Strathclyde.

Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip Wadler. 1996. Type Classes in Haskell. ACM Trans.
Program. Lang. Syst. 18, 2 (1996), 109–138. https://doi.org/10.1145/227699.227700

Barry Jay and Simon Peyton Jones. 2008. Scrap your type applications. In International Conference on Mathematics of
Program Construction. Springer, 2–27. https://doi.org/10.1007/978-3-540-70594-9_2

Manohar Jonnalagedda, Thierry Coppey, Sandro Stucki, Tiark Rompf, and Martin Odersky. 2014. Staged Parser Combinators

for Efficient Data Processing. In Proceedings of the 2014 ACM International Conference on Object Oriented Programming
Systems Languages & Applications (Portland, Oregon, USA) (OOPSLA ’14). Association for Computing Machinery, New

York, NY, USA, 637–653. https://doi.org/10.1145/2660193.2660241

Akira Kawata and Atsushi Igarashi. 2019. A Dependently Typed Multi-stage Calculus. In Asian Symposium on Programming
Languages and Systems. Springer, 53–72. https://doi.org/10.1007/978-3-030-34175-6_4

Oleg Kiselyov. 2014. The Design and Implementation of BER MetaOCaml. In Functional and Logic Programming, Michael

Codish and Eijiro Sumii (Eds.). Springer International Publishing, Cham, 86–102. https://doi.org/10.1007/978-3-319-

07151-0_6

Oleg Kiselyov. 2017. Generating Code with Polymorphic let: A Ballad of Value Restriction, Copying and Sharing. Electronic
Proceedings in Theoretical Computer Science 241 (Feb 2017), 1–22. https://doi.org/10.4204/eptcs.241.1

Oleg Kiselyov. 2018. Reconciling Abstraction with High Performance: A MetaOCaml approach. Foundations and Trends in
Programming Languages 5, 1 (2018), 1–101. https://doi.org/10.1561/2500000038

Yuichiro Kokaji and Yukiyoshi Kameyama. 2011. Polymorphic multi-stage language with control effects. In Asian Symposium
on Programming Languages and Systems. Springer, 105–120. https://doi.org/10.1007/978-3-642-25318-8_11

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 44. Publication date: January 2020.

https://doi.org/10.1145/3341713
https://doi.org/10.1145/3158093
https://doi.org/10.1145/3122955.3122967
https://doi.org/10.1145/1173706.1173724
https://doi.org/10.1007/978-3-540-24849-1_8
https://doi.org/10.5555/954186.954190
https://doi.org/10.5555/954186.954190
https://doi.org/10.1145/1090189.1086397
https://doi.org/10.1007/978-3-319-89366-2_14
https://doi.org/10.1145/382780.382785
https://doi.org/10.1145/2034675.2034690
https://doi.org/10.1145/2034675.2034690
https://doi.org/10.1145/1244381.1244400
https://doi.org/10.1145/3341711
https://doi.org/10.1145/227699.227700
https://doi.org/10.1007/978-3-540-70594-9_2
https://doi.org/10.1145/2660193.2660241
https://doi.org/10.1007/978-3-030-34175-6_4
https://doi.org/10.1007/978-3-319-07151-0_6
https://doi.org/10.1007/978-3-319-07151-0_6
https://doi.org/10.4204/eptcs.241.1
https://doi.org/10.1561/2500000038
https://doi.org/10.1007/978-3-642-25318-8_11

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

A Specification for Typed Template Haskell 44:27

Neelakantan R. Krishnaswami and Jeremy Yallop. 2019. A Typed, Algebraic Approach to Parsing. In Proceedings of the
40th ACM SIGPLAN Conference on Programming Language Design and Implementation (Phoenix, AZ, USA) (PLDI 2019).
Association for Computing Machinery, New York, NY, USA, 379–393. https://doi.org/10.1145/3314221.3314625

José Pedro Magalhães, Atze Dijkstra, Johan Jeuring, and Andres Löh. 2010. A Generic Deriving Mechanism for Haskell. In

Proceedings of the Third ACM Haskell Symposium on Haskell (Baltimore, Maryland, USA) (Haskell ’10). Association for

Computing Machinery, New York, NY, USA, 37–48. https://doi.org/10.1145/1863523.1863529

Aleksandar Nanevski. 2002. Meta-Programming with Names and Necessity. (2002), 206–217. https://doi.org/10.1145/

581478.581498

Andreas Nuyts and Dominique Devriese. 2018. Degrees of Relatedness: A Unified Framework for Parametricity, Irrelevance,

Ad Hoc Polymorphism, Intersections, Unions and Algebra in Dependent Type Theory. In Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science (Oxford, United Kingdom) (LICS ’18). Association for Computing

Machinery, New York, NY, USA, 779–788. https://doi.org/10.1145/3209108.3209119

Emir Pašalic. 2004. The role of type equality in meta-programming. Ph.D. Dissertation. OGI School of Science & Engineering

at OHSU.

Emir Pašalic, Walid Taha, and Tim Sheard. 2002. Tagless Staged Interpreters for Typed Languages. In Proceedings of the
Seventh ACM SIGPLAN International Conference on Functional Programming (Pittsburgh, PA, USA) (ICFP ’02). Association
for Computing Machinery, New York, NY, USA, 218–229. https://doi.org/10.1145/581478.581499

Simon Peyton Jones, Mark Jones, and Erik Meijer. 1997. Type classes: an exploration of the design space. InHaskell Workshop.
Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark Shields. 2007. Practical Type Inference for Arbitrary-

Rank Types. J. Funct. Program. 17, 1 (Jan. 2007), 1–82. https://doi.org/10.1017/S0956796806006034

Frank Pfenning. 2001. Intensionality, extensionality, and proof irrelevance in modal type theory. In Proceedings 16th Annual
IEEE Symposium on Logic in Computer Science. IEEE, 221–230.

Matthew Pickering. 2019. Overloaded Quotations. GHC proposal. https://github.com/ghc-proposals/ghc-proposals/blob/

master/proposals/0246-overloaded-bracket.rst

Matthew Pickering, Nicolas Wu, and Csongor Kiss. 2019a. Multi-Stage Programs in Context. In Proceedings of the 12th ACM
SIGPLAN International Symposium on Haskell (Berlin, Germany) (Haskell 2019). Association for Computing Machinery,

New York, NY, USA, 71–84. https://doi.org/10.1145/3331545.3342597

Matthew Pickering, Nicolas Wu, and Boldizsár Németh. 2019b. Working with Source Plugins. In Proceedings of the 2019
ACM SIGPLAN Symposium on Haskell (Berlin, Germany) (Haskell ’19). ACM, New York, NY, USA. https://doi.org/10.

1145/3331545.3342599

Alexey Rodriguez, Johan Jeuring, Patrik Jansson, Alex Gerdes, Oleg Kiselyov, and Bruno C. d. S. Oliveira. 2008. Comparing

Libraries for Generic Programming in Haskell. In Proceedings of the First ACM SIGPLAN Symposium on Haskell (Victoria,
BC, Canada) (Haskell ’08). Association for Computing Machinery, New York, NY, USA, 111–122. https://doi.org/10.1145/

1411286.1411301

Tiark Rompf and Martin Odersky. 2010. Lightweight Modular Staging: A Pragmatic Approach to Runtime Code Generation

and Compiled DSLs. In Proceedings of the Ninth International Conference on Generative Programming and Component
Engineering (Eindhoven, The Netherlands) (GPCE ’10). ACM, New York, NY, USA, 127–136. https://doi.org/10.1145/

1868294.1868314

Evgeny Roubinchtein. 2015. IR-MetaOCaml: (re)implementing MetaOCaml. Master’s thesis. University of British Columbia.

https://doi.org/10.14288/1.0166800

Philipp Schuster, Jonathan Immanuel Brachthäuser, and Klaus Ostermann. 2020. Zero-cost Effect Handlers by Staging.

(2020). In submission.

Alejandro Serrano, Jurriaan Hage, Simon Peyton Jones, and Dimitrios Vytiniotis. 2020. A quick look at impredicativity.

(January 2020). https://www.microsoft.com/en-us/research/publication/a-quick-look-at-impredicativity/ In submission.

Alejandro Serrano, Jurriaan Hage, Dimitrios Vytiniotis, and Simon Peyton Jones. 2018. Guarded Impredicative Polymorphism.

In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation (Philadelphia,

PA, USA) (PLDI 2018). ACM, New York, NY, USA, 783–796. https://doi.org/10.1145/3192366.3192389

Tim Sheard and Simon Peyton Jones. 2002. Template Meta-programming for Haskell. In Proceedings of the 2002 ACM
SIGPLAN Workshop on Haskell (Pittsburgh, Pennsylvania) (Haskell ’02). ACM, New York, NY, USA, 1–16. https://doi.org/

10.1145/581690.581691

Nicolas Stucki, Aggelos Biboudis, and Martin Odersky. 2018. A Practical Unification of Multi-Stage Programming and

Macros. In Proceedings of the 17th ACM SIGPLAN International Conference on Generative Programming: Concepts and
Experiences (Boston, MA, USA) (GPCE 2018). Association for Computing Machinery, New York, NY, USA, 14–27. https:

//doi.org/10.1145/3278122.3278139

Walid Taha. 2004. A Gentle Introduction to Multi-stage Programming. Springer Berlin Heidelberg, Berlin, Heidelberg, 30–50.

https://doi.org/10.1007/978-3-540-25935-0_3

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 44. Publication date: January 2020.

https://doi.org/10.1145/3314221.3314625
https://doi.org/10.1145/1863523.1863529
https://doi.org/10.1145/581478.581498
https://doi.org/10.1145/581478.581498
https://doi.org/10.1145/3209108.3209119
https://doi.org/10.1145/581478.581499
https://doi.org/10.1017/S0956796806006034
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0246-overloaded-bracket.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0246-overloaded-bracket.rst
https://doi.org/10.1145/3331545.3342597
https://doi.org/10.1145/3331545.3342599
https://doi.org/10.1145/3331545.3342599
https://doi.org/10.1145/1411286.1411301
https://doi.org/10.1145/1411286.1411301
https://doi.org/10.1145/1868294.1868314
https://doi.org/10.1145/1868294.1868314
https://doi.org/10.14288/1.0166800
https://www.microsoft.com/en-us/research/publication/a-quick-look-at-impredicativity/
https://doi.org/10.1145/3192366.3192389
https://doi.org/10.1145/581690.581691
https://doi.org/10.1145/581690.581691
https://doi.org/10.1145/3278122.3278139
https://doi.org/10.1145/3278122.3278139
https://doi.org/10.1007/978-3-540-25935-0_3

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

44:28 Anon.

Walid Taha and Tim Sheard. 1997. Multi-stage Programming with Explicit Annotations. In Proceedings of the 1997 ACM
SIGPLAN Symposium on Partial Evaluation and Semantics-based Program Manipulation (Amsterdam, The Netherlands)

(PEPM ’97). ACM, New York, NY, USA, 203–217. https://doi.org/10.1145/258993.259019

Walid Taha and Tim Sheard. 2000. MetaML and multi-stage programming with explicit annotations. Theor. Comput. Sci. 248,
1-2 (2000), 211–242. https://doi.org/10.1016/S0304-3975(00)00053-0

Dimitrios Vytiniotis, Simon Peyton Jones, Tom Schrijvers, and Martin Sulzmann. 2011. OutsideIn(X) Modular Type Inference

with Local Assumptions. J. Funct. Program. 21, 4-5 (Sept. 2011), 333–412. https://doi.org/10.1017/S0956796811000098

Stephanie Weirich, Antoine Voizard, Pedro Henrique Azevedo de Amorim, and Richard A. Eisenberg. 2017. A Specification

for Dependent Types in Haskell. Proc. ACM Program. Lang. 1, ICFP, Article 31 (Aug. 2017), 29 pages. https://doi.org/10.

1145/3110275

Jamie Willis, Nicolas Wu, and Matthew Pickering. 2020. Staged Selective Parser Combinators. (2020). In submission.

Jeremy Yallop. 2017. Staged Generic Programming. Proc. ACM Program. Lang. 1, ICFP, Article 29 (Aug. 2017), 29 pages.
https://doi.org/10.1145/3110273

Jeremy Yallop, Tamara von Glehn, and Ohad Kammar. 2018. Partially-Static Data as Free Extension of Algebras. Proc. ACM
Program. Lang. 2, ICFP, Article 100 (July 2018), 30 pages. https://doi.org/10.1145/3236795

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 44. Publication date: January 2020.

https://doi.org/10.1145/258993.259019
https://doi.org/10.1016/S0304-3975(00)00053-0
https://doi.org/10.1017/S0956796811000098
https://doi.org/10.1145/3110275
https://doi.org/10.1145/3110275
https://doi.org/10.1145/3110273
https://doi.org/10.1145/3236795

	Abstract
	1 Introduction
	2 Background: Multi-Staged Programming
	3 Staging with Type Classes and Polymorphism
	3.1 Constraints
	3.2 Top-level splices
	3.3 The power function revisited
	3.4 Instance Definitions
	3.5 Type Variables
	3.6 Intermediate Summary

	4 Source Language
	4.1 Syntax
	4.2 Typing Rules

	5 The Core Language
	5.1 Syntax
	5.2 Typing Rules
	5.3 Dynamic Semantics
	5.4 Module Restriction

	6 Elaboration
	6.1 Elaboration procedure
	6.2 Splice Elaboration
	6.3 Constraint Elaboration
	6.4 Example

	7 Pragmatic Considerations
	7.1 Integration into GHC
	7.2 Interaction with Existing Features
	7.3 Interaction with Future Features

	8 Related Work
	9 Conclusion
	References

