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Deriving Via
or, How to Turn Hand-Written Instances into an Anti-Pattern

Baldur Blöndal Andres Löh
Well-Typed LLP

Ryan Scott
Indiana University

Abstract
Haskell’s deriving construct is a cheap and cheerful way to
quickly generate instances of type classes that follow com-
mon patterns. But at present, there are only a subset of such
type class patterns that deriving supports, and if a particu-
lar class lies outside of this subset, then one cannot derive
it at all, with no alternative except for laboriously declaring
the instances by hand.

To overcome this deficit, we introduce Deriving Via, an
extension to deriving that enables programmers to com-
pose instances from named programming patterns, thereby
turning deriving into a high-level domain-specific language
for defining instances. Deriving Via leverages newtypes—an
already familiar tool of the Haskell trade—to declare recur-
ring patterns in a way that both feels natural and allows a
high degree of abstraction.

ACM Reference Format:
Baldur Blöndal, Andres Löh, and Ryan Scott. 2018. Deriving Via: or,
How to Turn Hand-Written Instances into an Anti-Pattern. In Pro-
ceedings of Haskell Symposium (Submitted to Haskell). ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
In Haskell, type classes capture common interfaces. When
defining class instances, we often discover repeated patterns
where different instances have the same definition. For ex-
ample, the following instances appear in the base library of
the Glasgow Haskell Compiler (GHC):

instance Monoid a => Monoid (IO a) where

mempty = pure mempty

mappend = liftA2 mappend

instance Monoid a => Monoid (ST s a) where

mempty = pure mempty

mappend = liftA2 mappend

These have completely identical instance bodies. The under-
lying pattern works not only for IO and ST s, but for any
applicative functor f.

Submitted to Haskell, 09/2018, St. Louis, MO, USA
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

It is tempting to avoid this obvious repetition by defining
an instance for all such types in one fell swoop:

instance (Applicative f, Monoid a)

=> Monoid (f a) where

mempty = pure mempty

mappend = liftA2 mappend

Unfortunately, this general instance is undesirable as it over-
laps with all other (f a)-instances. Instance resolution will
match the instance head first before considering the context,
whether f is applicative or not. Once GHC has commited to
an instance, it will never backtrack. Consider:

newtype Endo a = MkEndo (a -> a) -- Data.Monoid

Here, Endo is not an applicative functor, but it still admits a
perfectly valid Monoid instance that overlaps with the gen-
eral instance above:

instance Monoid (Endo a) where

mempty = MkEndo id

mappend (MkEndo f) (MkEndo g) = MkEndo (f . g)

Moreover, even if we have an applicative functor f on our
hands, there is no guarantee that this is the definition we
want. Notably, lists are the free monoid (the most ‘funda-
mental’ monoid) but that instance does not coincide with
the rule above and in particular, imposes no (Monoid a) con-
straint:

instance Monoid [a] where

mempty = []

mappend = (++)

In fact, themonoid instance for lists is captured by a different
rule based on Alternative:

instance Alternative f => Monoid (f a) where

mempty = empty

mappend = (<|>)

Because instance resolution never backtracks, we can’t de-
fine these two distinct rules for Monoid (f a) at the same
time, even with overlapping instances.
The only viable workaround using the Haskell type class

system is to write the instances for each data type by hand,
each one with an identical definition (like the instances for
IO a and ST s a), which is extremely unsatisfactory:

2018-04-01 14:57. Page 1 of 1–12. 1
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• It is not obvious that we are instantiating a general
principle.

• Because the general principle is not written down in
codewith a name and documentation, it has to be com-
municated through folklore or in comments and is dif-
ficult to discover and search for. Our code has lost a
connection to its origin.

• There are many such rules, some quite obvious, but
others more surprising and easy to overlook.

• While the work required to define instances manually
for Monoid—which only has two methods—is perhaps
acceptable, it quickly becomes extremely tedious and
error-prone for classes with many methods.

As an illustration of the final point, consider Num. There is
a way to lift a Num instance through any applicative functor:1

instance (Applicative f, Num a) => Num (f a) where

(+) = liftA2 (+)

(-) = liftA2 (-)

(∗) = liftA2 (∗)
negate = liftA negate

abs = liftA abs

signum = liftA signum

fromInteger = pure . fromInteger

Defining such boilerplate instances manually for concrete
type constructors is so annoying that Conal Elliott intro-
duced a preprocessor [7] for this particular use case several
years ago.

1.1 Deriving
Readers familiar with Haskell’s deriving mechanism may
wonder why we cannot simply derive all the instances we
just discussed. Unfortunately, our options are very limited.

To start, Monoid is not one of the few blessed type classes
that GHC has built-in support to derive. It so happens that
(IO a), (ST s a) and (Endo a) are all newtypes, so they are
in principle eligible for generalized newtype deriving (GND),
in which their instances could be derived by reusing the in-
stances of their underlying types [1]. However, this would
give us the wrong definition in all three cases.

Our last hope is that the the Monoid type class has a suit-
able generic default implementation [10]. If that were the
case, we could use a deriving clause in conjunction with the
DeriveAnyClass extension, and thereby get the compiler to
generate an instance for us.

However, there is no generic default for Monoid, a stan-
dard class from the base library (which would be difficult to
change). But even if a generic instance existed, it would still
capture a single rule over all others, so we couldn’t ever use
it to derive both the monoid instance for lists and that for
ST s a.
1Similarly for Floating and Fractional, numeric type classes with a com-
bined number of 25 methods (15 for a minimal definition).

We thus have no other choice but to write some instances
by hand. This means that we have to provide explicit imple-
mentations of at least a minimal subset of the class methods.
There is no middle ground here, and the additional work
required compared to deriving can be drastic—especially if
the class hasmanymethods—so the option of using deriving
remains an appealing alternative.

1.2 Introducing Deriving Via
We are now going to address this unfortunate lack of ab-
straction and try to bridge the gap between manually de-
fined instances and the few available deriving mechanisms
we have at our disposal.

Our approach has two parts:
1. We capture general rules for defining new instances

using newtypes.
2. We introduce Deriving Via, a new language construct

that allows us to use such newtypes to explain to the
compiler exactly how to construct the instance with-
out having to write it by hand.

As a result, we are no longer limited to a fixed set of pre-
defined ways to define particular class instances, but can
instead teach the compiler new rules for deriving instances,
selecting the one we want using a high-level description.

Let us look at examples. For the first part, we revisit the
rule that explains how to lift a monoid instance through
an applicative functor. We can turn the problematic generic
and overlapping instance for Monoid (f a) into an entirely
unproblematic instance by defining a suitable adapter new-
type [8] and wrapping the instance head in it:
newtype App f a = App (f a)

instance (Applicative f, Monoid a)

=> Monoid (App f a) where

mempty = App (pure mempty)

mappend (App f) (App g) = App (liftA2 mappend f g)

Since GHC 8.4, we also need a Semigroup instance, because
it is now a superclass of Monoid2:
instance (Applicative f, Semigroup a)

=> Semigroup (App f a) where

App f <> App g = App (liftA2 (<>) f g)

The second part is to now use such a rule in our new form
of deriving statement. We can do this when defining a new
data type, such as in
data Maybe a = Nothing | Just a

deriving Monoid via (App Maybe a)

This requires that we independently have an Applicative

instance for Maybe, but then we obtain the desired Monoid

instance nearly for free.
In the deriving clause, via is a new language construct

that explains how GHC should derive the instance, namely
2See Section 4.4 for a more detailed discussion of this aspect.

2 2018-04-01 14:57. Page 2 of 1–12.
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by reusing the Monoid instance already available for the via

type, App Maybe a. It should be easy to see why this works:
due to the use of a newtype, App Maybe a has the same inter-
nal representation as Maybe a, and any instance available on
one type can bemade to work on the other by suitably wrap-
ping or unwrapping a newtype. In more precise language,
App Maybe a and Maybe a are representationally equal.

The Data.Monoid module defines many further adapters
that can readily be used with Deriving Via. For example, the
rule that obtains a Monoid instance from an Alternative in-
stance is already available through the Alt newtype:
newtype Alt f a = Alt (f a)

instance Alternative f => Monoid (Alt f a) where

mempty = Alt empty

mappend (Alt f) (Alt g) = Alt (f <|> g)

instance Alternative f => Semigroup (Alt f a) where

(<>) = mappend

Using adapters such as App and Alt, a vast amount of Monoid
instances that currently have to be defined by hand can in-
stead be derived using the via construct.

1.3 Contributions and structure of the paper
The paper is structured as follows: In Section 2, we use the
QuickCheck library as a case study to explain in more de-
tail how Deriving Via can be used, and how it works. In Sec-
tion 3, we explain in detail how to typecheck and translate
Deriving Via clauses. In Section 4, we discuss several addi-
tional applications of Deriving Via. We discuss related ideas
in Section 5, describe the current status of our extension in
Section 6 and conclude in Section 7.
Our extension is fully implemented in aGHC branch3, and

we are working on a proposal to incorporate it into GHC
proper, so it will hopefully be available in a future release of
GHC.
The idea of Deriving Via is surprisingly simple, yet it has

a number of powerful and equally surprising properties:
• It further generalizes the generalized newtype deriving
extension. (Section 3.2.1).

• It additionally generalizes the concept of default sig-
natures. (Section 4.2).

• It provides a possible solution to the problem of intro-
ducing additional boilerplate code when introducing
new superclasses (such as Applicative for Monad, Sec-
tion 4.4).

• It allows for reusing instances not just between repre-
sentationtally equal types, but also between isomor-
phic or similarly related types (Section 4.3).

2 Case study: QuickCheck
QuickCheck [3] is a well-knownHaskell library for random-
ized property-based testing. At the core of QuickCheck’s
3https://github.com/RyanGlScott/ghc/tree/deriving-via

test-case generation functionality is the Arbitrary class. Its
primary method is arbitrary, which describes how to gen-
erate suitable random values of a given size and type. It also
has amethod shrink that is used to try to shrink failing coun-
terexamples of test properties.
Many standard Haskell types, such as Int and lists, are

already instances of Arbitrary. This can be very convenient,
becausemany properties involving these types can be quick-
checked without any extra work.
On the other hand, there are often additional constraints

imposed on the actual values of a type that are not suffi-
ciently expressed in their types. Depending on the context
and the situation, we might want to guarantee that we gen-
erate positive integers, or non-empty lists, or even sorted
lists.
The QuickCheck library provides a number of newtype-

based adapters (called modifiers in the library) for this pur-
pose. As an example,QuickCheck defines:

newtype NonNegative a =

NonNegative {getNonNegative :: a}

which comes with a predefined instance of the form

instance (Num a, Ord a, Arbitrary a)

=> Arbitrary (NonNegative a)

that explains how to generate and shrink non-negative num-
bers. A user who wants a non-negative integer can now use
NonNegative Int rather than Int to make this obvious.
This approach, however, has a drastic disadvantage: we

have to wrap each value in an extra constructor, and the
newtype and constructor are QuickCheck-specific. An im-
plementation detail (the choice of testing library) leaks into
the data model of an application. While we might be willing
to use domain-specific newtypes for added type safety, such
as Age or Duration, wemight not be eager to addQuickCheck
modifiers everywhere. And what if we need more than one
modifier? And what if other libraries export their own set of
modifiers as well? We certainly do not want to change the
actual definition of our data types (and corresponding code)
whenever we start using a new library.

With Deriving Via, we have the option to reuse the exist-
ing infrastructure of modifiers without paying the price of
cluttering up our data type definitions. We can choose an
actual domain-specific newtype such as

newtype Duration = Duration Int -- in seconds

and now specify exactly how the Arbitrary should be de-
rived for this:

deriving Arbitrary via (NonNegative Int)

This yields an Arbitrary instance which only generates non-
negative integers. Only the deriving clause changes, not the
data type itself. If we later decide we want only positive in-
tegers as durations, we replace NonNegative with Positive

2018-04-01 14:57. Page 3 of 1–12. 3
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in the deriving clause. Again, the data type itself is unaf-
fected. In particular, we do not have to change any construc-
tor names anywhere in our code.

2.1 Composition
Multiple modifiers can be combined. For example, there is
another modifier called Large that will scale up the size of
integral values being produced by a generator. It is defined
as

newtype Large a = Large {getLarge :: a}

with a corresponding Arbitrary instance:

instance (Integral a, Bounded a) => Arbitrary (Large a)

For our Duration type, we can easily write

deriving Arbitrary via (NonNegative (Large Int))

and derive an instance which only generates Duration val-
ues that are both non-negative and large. This works be-
cause Duration still shares the same runtime representation
as NonNegative (Large Int) (namely, that of Int), so the lat-
ter’s Arbitrary instance can be reused.

2.2 Adding new modifiers
Of course, we can add add our own modifiers if the set of
predefined modifiers is not sufficient. For example, it is diffi-
cult to provide a completely generic Arbitrary instance that
works for all data types, simply because there are too many
assumptions about what makes good test data that need to
be taken into account.

But for certain groups of data types, there are quite rea-
sonable strategies of coming up with generic instances. For
example, for enumeration types, one strategy is to desire a
uniform distribution of the finite set of values.QuickCheck
even offers such a generator, but it does not expose it as a
newtype modifier:

arbitraryBoundedEnum :: (Bounded a, Enum a) => Gen a

But from this, we can easily define our own:

newtype BoundedEnum a = BoundedEnum a

instance (Bounded a, Enum a)

=> Arbitrary (BoundedEnum a) where

arbitrary = BoundedEnum <$> arbitraryBoundedEnum

We can then use this functionality to derive Arbitrary for a
new enumeration type:

data Weekday = Mo | Tu | We | Th | Fr | Sa | Su

deriving (Enum, Bounded)

deriving Arbitrary via (BoundedEnum Weekday)

2.3 Parameterized modifiers
Sometimes, wemightwant to parameterize a generatorwith
extra data. We can do so by defining a modifier that has ex-
tra arguments and using those extra arguments in the asso-
ciated Arbitrary instance.
An extreme case that also makes use of type-level pro-

gramming features in GHC is a modifier that allows us to
specify a lower and an upper bound of a generated natural
number.

newtype Between (l :: Nat) (u :: Nat) = Between Integer

instance (KnownNat l, KnownNat u)

=> Arbitrary (Between l u) where

arbitrary = Between <$>

choose (natVal @l Proxy, natVal @u Proxy)

(Note that this instance makes use of visible type applica-
tion [6] in natVal @l and natVal @u.)
We can then equip an application-specific type for years

with a generator that lies within a plausible range:

newtype Year = Year Integer

deriving Show

deriving Arbitrary via (Between 1900 2100)

In general, we can use this technique of adding extra pa-
rameters to a newtype to support additional ways to config-
ure the behavior of derived instances.

3 Typechecking and translation
Seeing enough examples of Deriving Via can give the im-
pression that it is a somewhat magical feature. In this sec-
tion, we aim to explain the magic underlying Deriving Via
by giving a more precise description of:

• How Deriving Via clauses are typechecked.
• What code Deriving Via generates behind the scenes.
• How to determine the scoping of type variables in De-
riving Via clauses.

To avoid clutter, we assume that all types have monomor-
phic kinds. However, it is easy to incorporate kind polymor-
phism [12], and our implementation of these ideas in GHC
does so.

3.1 Well-typed uses of Deriving Via
Deriving Via grants the programmer the ability to put ex-
tra types in her programs, but the flip side to this is that
it’s possible for her to accidentally put total nonsense into
a Deriving Via clause, such as:

newtype S = S Char

deriving Eq via Maybe

In this section, we describe a general algorithm for when a
Deriving Via clause should typecheck, which will allow us
to reject ill-formed examples like the one above.

4 2018-04-01 14:57. Page 4 of 1–12.
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3.1.1 Aligning kinds
Suppose we are deriving the following instance:

data D d1 . . . dm
deriving (C c1 . . . cn) via (V v1 . . . vp)

In order for this declaration to typecheck, wemust check the
kinds of each type. In particular, the following conditions
must hold:

1. The type C c1 . . . cn must be of kind (k1 -> . . . -> kr ->

*) -> Constraint for some kinds k1, . . ., kr . The rea-
son is that the instance we must generate,

instance C c1 . . . cn (D d1 . . . di) where . . .

requires that we can apply C c1 . . . cn to another type
D d1 . . . di (where i ⩽ m, see Section 3.1.2). Therefore,
it would be nonsense to try to derive an instance of C
c1 . . . cn if it had kind, say, Constraint.

2. The kinds V v1 . . . vp and D d1 . . . di, and the kind of
the argument to C c1 . . . cn must all unify. This check
rules out the above example of deriving Eq via Maybe,
as it does not even make sense to talk about reusing
the Eq instance for Maybe—which is of kind (* -> *)—
as Eq instances can only exist for types of kind *.

3.1.2 Eta-reducing the data type
Note that in the conditions above, we specify D d1 . . . di (for
some i), instead of D d1 . . . dm. That is because in general,
the kind of the argument to C c1 . . . cn is allowed to be dif-
ferent from the kind of D d1 . . . dm! For instance, the follow-
ing example is perfectly legitimate:

class Functor (f :: * -> *) where . . .

data Foo a = Foo a a

deriving Functor

despite the fact that Foo a has kind * and the argument to
Functor has kind (* -> *). This is because the code that ac-
tually gets generated has the following shape:

instance Functor Foo where . . .

To put it differently, we have eta-reduced away the a in Foo

a before applying Functor to it. The power to eta-reduce
variables from the data type is part of what makes deriving
clauses so flexible.

To determine howmany variables to eta-reduce, we must
examine the kind of C c1 . . . cn, which by condition (1) is
of the form ((k1 -> ... -> kr -> ∗) -> Constraint) for some
kinds k1, . . ., kr . Then the number of variables to eta-reduce
is simply r , so to compute the i in D d1 . . . di, we take i =
m − r .

This is better explained by example, so consider the fol-
lowing two scenarios, both of which typecheck:

newtype A a = A a deriving Eq via (Identity a)

newtype B b = B b deriving Functor via Identity

In the first example, we have the class Eq, which is of kind
* -> Constraint. The argument to Eq, which is of kind *,
does not require that we eta-reduce any variables. As a re-
sult, we check that A a is of kind *, which is the case.
In the second example, we have the class Functor, which

is of kind (* -> *) -> Constraint. The argument to Functor

is of kind (* -> *), which requires that we eta-reduce one
variable from B b to obtain B. We then check that B is kind
of (* -> *), which is true.

3.2 Code generation
Once the typechecker has ascertained that a via type is fully
compatible with the data type and the class for which an
instance is being derived,GHC proceeds with generating the
code for the instance itself. This generated code is then fed
back into the typechecker, which acts as a final sanity check
that GHC is doing the right thing under the hood.

3.2.1 Generalized newtype deriving (GND)
The process bywhichDeriving Via generates code is heavily
based off of the approach that the GND takes, so it is infor-
mative to first explain how GND works. From there, Deriv-
ing Via is a straightforward generalization—so much so that
Deriving Via could be thought of as “generalized GND”.

Our running example in this section will be the newtype
Age, which is a simple wrapper around Int (which we will
call the representation type):

newtype Age = MkAge Int

deriving Enum

A naïve way to generate code would be to manually wrap
and unwrap the MkAge constructor wherever necessary, such
as in the code below:

instance Enum Age where

toEnum i = MkAge (toEnum i)

fromEnum (MkAge x) = fromEnum x

enumFrom (MkAge x) = map MkAge (enumFrom x)

This works, but is somewhat unsatisfying. After all, a new-
type is intended to be a zero-cost abstraction that acts iden-
tically to its representation type at runtime. Accordingly,
any function that mentions a newtype in its type signature
should be able to be converted to a new function with all
occurrences of the newtype in the type signature replaced
with the representation type, and moreover, that new func-
tion should behave identically to the old one at runtime.
Unfortunately, the implementation of enumFrom may not

uphold this guarantee.While wrapping and unwrapping the
MkAge constructor is certain to be a no-op, the map function
is definitely not a no-op, as it must walk the length of a list.
But the fact that we need to call map in the first place feels
rather silly, as all we are doing is wrapping a newtype at
each element.

2018-04-01 14:57. Page 5 of 1–12. 5
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Luckily, there is a convenient solution to this problem: the
safe coerce function [1]:

coerce :: Coercible a b => a -> b

Operationally, coerce can be thought of as behaving like its
wily cousin, unsafeCoerce, which takes a value of one type
as casts it to a value at a another type. Unlike unsafeCoerce,
which can break programs if used carelessly, coerce is com-
pletely type-safe due to its use of the Coercible constraint.
We will explain Coercible in more detail later, but for now,
it suffices to say that a Coercible a b constraint witnesses
the fact that two types a and b have the same representation
at runtime, and thus any value of type a can be safely cast
to type b.
Armed with coerce, we can show what code GND would

actually generate for the Enum Age instance above:

instance Enum Age where

toEnum =

coerce @(Int -> Int) @(Int -> Age) toEnum

fromEnum =

coerce @(Int -> Int) @(Age -> Int) fromEnum

enumFrom =

coerce @(Int -> [Int]) @(Age -> [Age]) enumFrom

Now we have a strong guarantee that the Enum instance for
Age has exactly the same runtime characteristics as the in-
stance for Int. As an added benefit, the code ends up being
simpler, as every method can be implemented as a straight-
forward application of coerce. The only interesting part is
generating the two explicit type arguments [6] that are be-
ing used to specify the source type (using the representation
type) and the target type (using the newtype) of coerce.

3.2.2 The Coercible constraint
A Coercible constraint can be thought of as evidence that
GHC can use to cast between two types. Coercible is not a
type class, so it is impossible to write a Coercible instance
by hand. Instead, GHC can generate and solve Coercible

constraints automatically as part of its built-in constraint
solver, much like it can solve equality constraints. (Indeed,
Coercible can be thought of as a broader notion of equality
among types.)

As mentioned in the previous section, a newtype can be
safely cast to and from its representation type, so GHC treats
them as inter-Coercible. Continuing our earlier example,
this would mean that GHC would be able to conclude that:

instance Coercible Age Int

instance Coercible Int Age

But this is not all that Coercible is capable of. A key prop-
erty is that GHC’s constraint solver can look inside of other
type constructors when determining if two types are inter-
Coercible. For instance, both of these statements hold:

instance Coercible (Age -> [Age]) (Int -> [Int])

instance Coercible (Int -> [Int]) (Age -> [Age])

This demonstrates the ability to cast through the function
and list type constructors. This ability is important, as our
derived enumFrom instance would not typecheck otherwise!
Another crucial fact about Coercible that we rely on is

that it is transitive: if Coercible a b and Coercible b c hold,
then Coercible a c also holds. This is perhaps unsurpris-
ing if one views Coercible as an equivalence relation, but
it a fact that is worth highlighting, as the transitivity of
Coercible is what allows us to coerce between newtypes. For
instance, if we have these two newtypes:

newtype A a = A [a]

newtype B = B [Int]

thenGHC is able to conclude that Coercible (A Int) B holds,
because we have the following Coercible rules

instance Coercible (A Int) [Int]

instance Coercible [Int] B

as well as transitivity. As we will discuss momentarily, De-
riving Via in particular makes heavy use of the transitivity
of Coercible.

3.2.3 From GND to Deriving Via
As we saw in Section 3.2.1, the code which GND generates
relies on coerce to do the heavy lifting. In this section, we
will generalize this technique slightly to give us a way to
generate code for Deriving Via.

Recall the following GND-derived instance:

newtype Age = MkAge Int deriving Enum

As stated above, it generates the following code for enumFrom:

instance Enum Age where

. . .
enumFrom =

coerce @(Int -> [Int]) @(Age -> [Age]) enumFrom

Here, there are two crucially important types: the represen-
tation type, Int, and the original newtype itself, Age. The
implementation of enumFrom simply sets up an invocation of
coerce enumFrom, with explicit type arguments to indicate
that we should reuse the existing enumFrom implementation
for Int and reappropriate it for Age.
The only difference in the code that GND and Deriving

Via generate is that in the former strategy,GHC always picks
the representation type for you, but in Deriving Via, the user
has the power to choose this type. For example, if a program-
mer had written this instead:

newtype T = T Int

instance Enum T where . . .

newtype Age = MkAge Int deriving Enum via T

then the following code would be generated:
6 2018-04-01 14:57. Page 6 of 1–12.



661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

Deriving Via Submitted to Haskell, 09/2018, St. Louis, MO, USA

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

enumFrom =

coerce @(T -> [T]) @(Age -> [Age]) enumFrom

This time, GHC coerces from an enumFrom implementation
for T (the via type) to an implementation for Age. (Recall
from Section 3.2.2 that this is possible since we can coerce

transitively from T to Int to Age).
Now we can see why the instances that Deriving Via can

generate are a strict superset of those thatGND can generate.
For instance, our earlier GND example

newtype Age = MkAge Int deriving Enum

could equivalently have been written using Deriving Via
like so:

newtype Age = MkAge Int deriving Enum via Int

3.3 Type variable scoping
In the remainder of this section, wewill present an overview
of how type variables are bound in Deriving Via clauses, and
over what types they scope. Deriving Via introduces a new
place where types can go, and more importantly, it intro-
duces a new place where type variables can be quantified,
so it takes some amount of care to devise a consistent treat-
ment for it.

3.3.1 Binding sites
Consider the following example:

data Foo a = . . .
deriving (Baz a b c) via (Bar a b)

Where is each type variable quantified?
• a is bound by Foo itself in the declaration data Foo a.
Such a variable scopes over both the derived class, Baz
a b c, as well as the via type, Bar a b.

• b is bound by the via type, Bar a b. Note that b is
bound here but a is not, as it was bound earlier by
the data declaration. b scopes over the derived class
type, Baz a b c, as well.

• c is bound by the derived class, Baz a b c, as it was
not bound elsewhere. (a and b were bound earlier.)

In other words, the order of scoping starts at the data dec-
laration, then the via type, and then the derived classes as-
sociated with that via type.

3.3.2 Establishing order
This scoping order may seem somewhat surprising, as one
might expect the type variables bound by the derived classes
to scope over the via type instead. However, this choice in-
troduces additional complications that are tricky to resolve.
For instance, consider a scenario where one attempts to de-
rive multiple classes at once with a single via type:

data D

deriving (C1 a, C2 a) via (T a)

Suppose we first quantified the variables in the derived
classes and made them scope over the via type. Because
each derived class has its own type variable scope, the a in C1

awould be bound independently from the a in C2 a. In other
words, wewould have something like this (using a hypothet-
ical forall syntax):

deriving (forall a . C1 a, forall a . C2 a) via (T a)

Nowwe are faced with a thorny question: which a is used in
the via type, T a? There are multiple choices here, since the
a variables in C1 a and C2 a are distinct! This is an important
decision, since the kinds of C1 and C2 might differ, so the
choice of a could affect whether T a kind-checks or not.

On the other hand, if one binds the a in T a first and has
it scope over the derived classes, then this becomes a non-
issue. We would instead have this:

deriving (C1 a, C2 a) via (forall a . T a)

Now, there is no ambiguity regarding a, as both a variables
in the list of derived classes were bound in the same place.

It might feel strange visually to see a variable being used
before its binding site (assuming one reads code from left to
right). However, this is not unprecedented within Haskell,
as this is also legal:

f = g + h where g = 1; h = 2

In this example, we have another scenario where things are
bound (g and h) after their use sites. In this sense, the via

keyword is continuing a rich tradition pioneered by where

clauses.
One alternative idea (which was briefly considered) was

to put the via type before the derived classes so as to avoid
this “zigzagging” scoping. However, this would introduce
additional ambiguities. Imagine one were to take this exam-
ple:

deriving Z via X Y

And convert it to a form in which the via type came first:

deriving via X Y Z

Should this be parsed as (X Y) Z, or X (Y Z)? It’s not clear
visually, so this choice would force programmers to write
additional parentheses.

4 More use cases
We have already seen in Section 2 how Deriving Via facili-
tates greater code reuse in the context of QuickCheck. This
is far from the only domain where Deriving Via proves to
be a natural fit, however. In fact, there are so many of these
domains, there would be enough to fill pages upon pages!

Unfortunately, we do not have enough space to document
all of these use cases, so in this section, we present a cross-
section of scenarios in which Deriving Via can capture in-
teresting patterns and allow programmers to abstract over
them in a convenient way.
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4.1 Asymptotic improvements with ease
A widely used feature of type classes is their ability to give
default implementations for their methods if a programmer
leaves them off. One example of this can be found in the
Applicative class. The main workhorse of Applicative is
the (<*>) method, but on occasion, it is more convenient to
use the (<*) or (*>)methods, which sequence their actions
but discard the result of one of their arguments:
class Functor f => Applicative f where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

(<*) :: f a -> f b -> f a

(<*) = liftA2 (\ a _ -> a)

(*>) :: f a -> f b -> f b

(*>) = liftA2 (\ _ b -> b)

As shown here, (<*) and (*>) have default implementations
in terms of liftA2. This works for any Applicative, but is
not as efficient as it could be in some cases. For some in-
stances of Applicative, we can actually implement these
methods in O(1) time instead of using liftA2, which can
often run in superlinear time. One such Applicative is the
function type (->):
instance Applicative ((->) r) where

pure = const

(<*>) f g x = f x (g x)

f <* _ = f

_ *> g = g

Note that we had to explicitly define (<*) and (*>), as the
default implementations would not have been as efficient.
But (->) is not the only type for which this trick works—
it also works for any data type that is isomorphic to (->)

r (for some r). These function-like types are characterized
by the Representable type class:
class Functor f => Representable f where

type Rep f

index :: f a -> (Rep f -> a)

tabulate :: (Rep f -> a) -> f a

This is a good deal more abstract than (->) r, so it can be
helpful to see how Representable works for (->) r itself:
instance Representable ((->) r) where

type Rep ((->) r) = r

index f = f

tabulate f = f

With Representable, we can codify the Applicative shortcut
for (<*) and (*>) with a suitable newtype:
newtype WrapRep f a = WrapRep (f a)

deriving (Functor, Representable)

instance Representable f

=> Applicative (WrapRep f) where

pure = tabulate . pure

f <*> g = tabulate (index f <*> index g)

f <* _ = f

_ *> g = g

Now, instead of having to manually override (<*) and (*>)

to get the desired performance, one can accomplish this in
a more straightforward fashion by using Deriving Via:

newtype IntConsumer a = IntConsumer (Int -> a)

deriving (Functor, Representable)

deriving Applicative via (WrapRep IntConsumer)

Not only does this save code in the long run, but it also gives
a name to the optimization being used, which allows it to be
documented, exported from a library, and thereby easier to
spot “in the wild” for other programmers.

4.2 Making defaults more flexible
In the previous section, we saw an example of how rely-
ing too much on a type class’s default implementations can
backfire. This is an unfortunately common trend with type
classes in general: Many classes try to pick one-size-fits-all
defaults that don’t work well in certain scenarios, but be-
causeHaskell allows specifying only one default permethod,
if the provided default doesn’t work for a programmer’s use
case, then she is forced to implement her own implementa-
tions by hand.
In this section, we continue the trend of generalizing de-

faults by looking at another language extension that Deriv-
ing Via can substitute for: default signatures. Default sig-
natures (a slight generalization of default implementations)
can eliminate large classes of boilerplate, but they too are
limited by the one-default-per-method restriction. Here, we
demonstrate how one can scrap uses of default signatures
in favor of Deriving Via, and show how Deriving Via can
overcome the limitations of default signatures.
The typical use case for default signatures is when one

has a type class method that has a frequently used default
implementation at a constrained type. For instance, consider
a Pretty class with a method pPrint for pretty-printing data:

class Pretty a where

pPrint :: a -> Doc

Coming up with Pretty instances for the vast majority of
data types is repetitive and tedious, so a common pattern is
to abstract away this tedium using generic programming li-
braries, such as those found in GHC.Generics [10] or generics-
sop [4]. For example, using GHC.Generics, we can define

genericPPrint ::

(Generic a, GPretty (Rep a)) => a -> Doc

The details of how Generic, GPretty, and Rep work are not
important to understanding the example.What is important
is to note that we cannot just add

pPrint = genericPPrint

8 2018-04-01 14:57. Page 8 of 1–12.
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as a conventional default implementation to the Pretty class,
because it does not typecheck due to the extra constraints.

Before the advent of default signatures, one had to work
around this by defining pPrint to be genericPPrint in every
Pretty instance, as in the examples below:

instance Pretty Bool where

pPrint = genericPPrint

instance Pretty a => Pretty (Maybe a) where

pPrint = genericPPrint

To avoid this repetition, default signatures allow one to pro-
vide a default implementation of a type class method using
additional constraints on the method’s type. For example:

class Pretty a where

pPrint :: a -> Doc

default pPrint ::

(Generic a, GPretty (Rep a)) => a -> Doc

pPrint = genericPPrint

Now, if any instances of Pretty are givenwithout an explicit
definition of pPrint, the default implementation is used. For
this to typecheck, the data type a used in the instance must
satisfy the constraints (Generic a, GPretty (Rep a)). Thus,
we can reduce the instances above to just

instance Pretty Bool

instance Pretty a => Pretty (Maybe a)

Although default signatures remove the need for many
occurrences of boilerplate code, it also imposes a significant
limitation: every type class method can have at most one
default implementation. As a result, default signatures effec-
tively endorse one default implementation as the canonical
one. But in many scenarios, there is far more than just one
way to do something. Our pPrint example is no exception.
Instead of genericPPrint, one might one to:

• Leverage a Show-based default implementation instead
of a Generic-based one,

• Use a different generic programming library, such as
generics-sop, instead of GHC.Generics, or

• Use a tweaked version of genericPPrint which dis-
plays extra debugging information.

All of these are perfectly reasonable choices a program-
mermight want tomake, but alas,GHC only lets type classes
bless each method with one default.

Fortunately, Deriving Via provides a convenient way of
encoding default implementations with the ability to toggle
between different choices: newtypes! For instance, we can
codify two different approaches to implementing pPrint as
follows:

newtype GenericPPrint a = GenericPPrint a

instance (Generic a, GPretty (Rep a))

=> Pretty (GenericPPrint a) where

pPrint (GenericPPrint x) = genericPPrint x

newtype ShowPPrint a = ShowPPrint a

instance Show a => Pretty (ShowPPrint a) where

pPrint (ShowPPrint x) = stringToDoc (show x)

With these newtypes in hand, choosing between them is as
simple as changing a single type:

deriving Pretty via (GenericPPrint DataType1)

deriving Pretty via (ShowPPrint DataType2)

Wehave seen howDerivingViamakes it quite simple to give
names to particular defaults, and how toggling between de-
faults is a matter of choosing a name. In light of this, we
believe that many current uses of default signatures ought
to be removed entirely and replaced with the Deriving Via-
based idiom presented in this section. This avoids the need
to bless one particular default, and forces programmers to
consider which default is best suited to their use case, in-
stead of blindly trusting the type class’s blessed default to
always do the right thing.
An additional advantage is that it allows decoupling the

definition of such defaults from the site of the class defi-
nition. Hence, if a package author is hesitant to add a de-
fault because that might incur an unwanted additional de-
pendency, nothing is lost, and the default can simply be
added in a separate package.

4.3 Deriving via isomorphisms
All of the examples presented thus far in the paper rely on
deriving through data types that have the same runtime rep-
resentation as the original data type. In the following, how-
ever, we point out that—perhaps surprisingly—we can also
derive through data types that are isomorphic, not just rep-
resentationally equal. To accomplish this feat, we rely on
techniques from generic programming.
Let us go back toQuickCheck (as in Section 2) once more

and consider the data type
data Track = Track Title Duration

for which wewould like to define an Arbitrary instance. Let
us further assume that we already have Arbitrary instances
for both Title and Duration.

The QuickCheck library defines an instance for pairs, so
we could generate values of type (Title, Duration), and in
essence, this is exactly what wewant. But unfortunately, the
two types are not inter-Coercible, even though they are iso-
morphic4.

However, we can exploit the isomorphism and still get an
instance for free, and the technique we apply is quite widely
applicable in similar situations. As a first step, we declare a
newtype to capture that one type is isomorphic to another:
newtype SameRepAs a b = SameRepAs a

4Isomorphic in the sense that we can define a function from Track to
(Title, Duration) and vice versa. Depending on the classwewant to derive,
sometimes an even weaker relationship between the types is sufficient, but
we will focus on the case of isomorphism here for reasons of space.
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Note that the idea here is that a and b are isomorphic in
some sense, but only a is used as the value of the type. So
SameRepAs a b is inter-Coercible with a.

We choose to witness an isomorphism between the two
types via their generic representations: if two types have
inter-Coercible generic representations, we can transform
back and forth using the from and tomethods of the Generic
class from GHC.Generics [10]. We can use this to define a
suitable Arbitrary instance for SameRepAs:

instance

( Generic a, Generic b, Arbitrary b

, Coercible (Rep a ()) (Rep b ()), Arbitrary b

) => Arbitrary (a ‘SameRepAs‘ b) where

arbitrary = SameRepAs . coerceViaRep <$> arbitrary

where

coerceViaRep :: b -> a

coerceViaRep =

to . (coerce :: Rep b () -> Rep a ()) . from

Here, we first use arbitrary to give us a generator of type
Gen b, then coerce this via the generic representations into
an arbitrary value of type Gen a.

Finally, we can use the following deriving declarations
for Track to obtain the desired Arbitrary instance:

deriving Generic

deriving Arbitrary

via (Track ‘SameRepAs‘ (String, Duration))

With this technique, we can significantly expand the “equiv-
alence classes” of data types that can be used when picking
suitable types to derive through.

4.4 Retrofitting superclasses
On occasion, the need arises to retrofit an existing type class
with a superclass, such as when Monad was changed to have
Applicative as a superclass (which in turn has Functor as a
superclass).

One disadvantage of such a change is that if the primary
goal is to define the Monad instance for a type, one now has to
write two additional instances, for Functor and Applicative,
even though these instances are actually determined by the
Monad instance.
With Deriving Via, we can capture this fact as a newtype,

therebymaking the process of defining such instancesmuch
less tedious:

newtype FromMonad m a = FromMonad (m a)

deriving Monad

instance Monad m => Functor (FromMonad m) where

fmap = liftM

instance Monad m => Applicative (FromMonad m) where

pure = return

(<*>) = ap

Now, if we have a data type with a Monad instance, we can
simply derive the corresponding Functor and Applicative

instances by referring to FromMonad:

data Stream a b = Done b | Yield a (Stream a b)

deriving (Functor, Applicative)

via (FromMonad (Stream a))

instance Monad (Stream a) where

return = Done

Yield a k >>= f = Yield a (k >>= f)

Done b >>= f = f b

One potentially problematic aspect remains. Another pro-
posal [11] has been put forth (but has not been implemented,
as of now) to remove the returnmethod from the Monad class
andmake it a synonym for pure from Applicative. The argu-
ment is that return is redundant, given that pure does the
same thing with a more general type signature. All other
prior discussion about the proposal aside, it should be noted
that removing return from the Monad class would prevent
FromMonad from working, as then Monad instances would not
have any way to define pure. 5

4.5 Avoiding orphan instances
Not only can Deriving Via quickly procure type class in-
stances, in some cases, it can eliminate the need for cer-
tain instances altogether. Haskell programmers often want
to avoid orphan instances: instances defined in a separate
module from both the type class and data types being used.
Sometimes, however, it’s quite tempting to reach for orphan
instances, as in the following example adapted from a blog
post by Gonzalez [9]:

newtype Plugin = Plugin (IO (String -> IO ()))

deriving Semigroup

In order for this derived Semigroup instance to typecheck,
there must be a Semigroup instance for IO available. Suppose
for a moment that there was no such instance for IO. How
could one work around this issue?

• One could patch the base library to add the instance
for IO. But given base’s slow release cycle, it would be
a while before one could actually use this instance.

• Write an orphan instance for IO. This works, but is un-
desirable, as now anyone who uses Pluginmust incur
a possibly unwanted orphan instance.

Luckily, Deriving Via presents a more convenient third
option: re-use a Semigroup instance from another data type.
Recall the App data type from Section 1.2 that lets us define
a Semigroup instance by lifting through an Applicative in-
stance. As luck would have it, IO already has an Applicative

5A similar, yet somewhat weaker, argument applies to suggested changes
to relax the constraints of liftM and ap to merely Applicative and to change
their definitions to be identical to fmap and (<*>), respectively.
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instance, so we can derive the desired Monoid instance for
Plugin like so:

newtype Plugin = Plugin (IO (String -> IO ()))

deriving Semigroup

via (App IO (String -> App IO ()))

Note that we have to use App twice in the via type, corre-
sponding to the two occurences of IO in the Plugin type.
This is ok, because App IO has the same representation as IO.
As desired, we completely bypass the need for a Semigroup

instance for IO.

5 Related Ideas
We have demonstrated in the previous section that Deriving
Via is an extremely versatile technique, and can be used to
tackle a wide variety of problems. Deriving Via also bears a
resemblance to other distinct language features, such as ML
functors and explicit dictionary passing, so in this section,
we present an overview of their similarities and differences.

5.1 ML functors
Languages in theML family, such as StandardML or OCaml,
provide functors, which are a feature of the module system
that allowswriting functions frommodules of one signature
to modules of another signature. In terms of functionality,
functors somewhat closely resemble Deriving Via, as func-
tors allow “lifting” of code into the module language much
like Deriving Via allows lifting of code into GHC’s deriving
construct.

5.2 Explicit dictionary passing
The power and flexibility of Deriving Via is largely due to
GHC’s ability to take a class method of a particular type and
massage it into a method of a different type. This process is
almost completely abstracted away from the user, however.
A user only needs to specify the types involved, and GHC
will handle the rest behind the scenes.

An alternative approach, which would put more power
into the hands of the programmer, is to permit the ability
to explicitly construct and pass the normally implicit dictio-
nary arguments corresponding to type class instances [5].
Unlike inDeriving Via, where going between class instances
is a process that is carefully guided by the compiler, permit-
ting explicit dictionary arguments would allow users to ac-
tually coerce concrete instance values and pass them around
as first-class values. In this sense, explicit dictionary argu-
ments could be thought of as a further generalization of the
technique that Deriving Via uses.

However, explicit dictionary arguments are a consider-
able extension of the language and its type system, and we
feel that to be too large a hammer for the nail we are trying
to hit. Deriving Via works by means of a simple desugaring
of code with some light typechecking on top, which makes

it much simpler to describe and implement. Finally, the prob-
lem which explicit dictionaries aims to solve—resolving am-
biguity in implicit arguments—almost never arises in Deriv-
ing Via, as the programmer must specify all the types in-
volved in the process.

6 Current status
We have implemented Deriving Via within GHC. Our im-
plementation also interacts well with other GHC features
that were not covered in this paper, such as kind polymor-
phism [12], StandaloneDeriving, and type classes with asso-
ciated type families [2]. However, there are still challenges
remaining, which we will describe in this section.

6.1 Quality of error messages
The nice thing about deriving is that when it works, it tends
to work extremely well. When it doesn’t work, however, it
can be challenging to formulate an error message that ade-
quately explains what went wrong. The fundamental issue
is that error messages resulting from uses of deriving are
usually rooted in generated code, and pointing to code that
the user didn’t write in error messages can sometimes lead
to a confusing debugging experience.
Fortunately, we have found in our experience that the

quality of Deriving Via-related error messages is overall on
the positive side. GHC has already invested significant ef-
fort into making type errors involving Coercible to be eas-
ily digestible by programmers, so Deriving Via benefits from
this work. For instance, if one inadvertently tries to derive
through a type that is not inter-Coercible with the original
data type, such as in the following example:
newtype UhOh = UhOh Char deriving Ord via Int

Then GHC will tell you exactly that, in plain language:
• Couldn’t match representation of type Char with that of Int

arising from the coercion of the method compare

from type ‘Int -> Int -> Ordering’
to type ‘UhOh -> UhOh -> Ordering’

That is not to say that every error message is this straight-
forward. There is are some scenarios that produce less-than-
ideal errors, such as this:
newtype Foo a = Foo (Maybe a) deriving Ord via a

• Occurs check: cannot construct the infinite type: a ~ Maybe a

arising from the coercion of the method ‘compare’
from type ‘a -> a -> Ordering’
to type ‘Foo a -> Foo a -> Ordering’

The real problem is that a and Maybe a do not have the
same representation at runtime, but the error does not make
this obvious. It is possible that one could add an ad hoc check
for this class of programs, but there are likely many more
tricky corner cases lurking around the corner, given that one
can put anything after via.
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We do not propose a solution to this problem here, but
instead note that issues with Deriving Via error quality are
ultimately issues with coerce error quality, given that the
error messages are a result of coerce failing to typecheck.
It is likely that investing more effort into making coerce’s
error messages easier to understand would benefit Deriving
Via as well.

6.2 Multi-Parameter Type Classes
GHC extends Haskell by permitting type classes with more
than one parameter. Multi-parameter type classes are ex-
tremely common in modern Haskell, to the point where we
assumed the existence of them in Section 3.1.1 without fur-
ther mention. However, multi-parameter type classes pose
an intriguing design question when combined with Deriv-
ingVia and StandaloneDeriving, anotherGHC featurewhich
allows one to write deriving declarations independently of
a data type.

For example, one can write the following instance using
StandaloneDeriving:
class Triple a b c where

triple :: (a, b, c)

instance Triple () () () where

triple = ((), (), ())

newtype A = A ()

newtype B = B ()

newtype C = C ()

deriving via () instance Triple A B C

However, the code it generates is somewhat surprising. In-
stead of reusing the Triple () () () instance in the derived
instance, it will attempt to reuse an instance for Triple A B

(). This is because, by convention, StandaloneDeriving will
only ever coerce through the last argument of a class. That
is because the standalone instance above would be the same
as if a user had written:
newtype C = C () deriving (Triple A B) via ()

This consistency is perhaps a bit limiting in this context,
where we have multiple arguments to C that one could “de-
rive through”. But it is not clear how GHC would figure out
which of these arguments to C should be derived through,
as there seven different combinations to choose from! It is
possible that another syntax would need to be devised to al-
low users to specify which arguments should be coerced to
avoid this ambiguity.

7 Conclusions
In this paper, we have introduced the Deriving Via language
extension, explained how it is implemented, and shown a
wide variety of use cases. We believe that Deriving Via has
the potential to dramatically change the way we write in-
stances, as it encourages giving names to recurring patterns
and reusing them where needed. It is our feeling that most

instance declarations that occur in the wild can actually be
derived by using a pattern that deserves to be known and
named, and that instances defined manually should become
an anti-pattern in all but some rare situations.
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