
Formalizing Semantic Bidirectionalization
with Dependent Types

Helmut Grohne
University of Bonn

grohne@cs.uni-bonn.de

Andres Löh
Well-Typed LLP

andres@well-typed.com

Janis Voigtländer
University of Bonn

jv@iai.uni-bonn.de

ABSTRACT
Bidirectionalization is the task of automatically inferring one
of two transformations that as a pair realize the forward
and backward relationship between two domains, subject to
certain consistency conditions. A specific technique, semantic
bidirectionalization, has been developed that takes a get-
function (mapping forwards from sources to views) as input —
but does not inspect its syntactic definition — and constructs
a put-function (mapping an original source and an updated
view back to an updated source), guaranteeing standard
well-behavedness conditions. Proofs of the latter have been
done by hand in the original paper, and recently published
extensions of the technique have also come with more or less
rigorous proofs or sketches thereof.

In this paper we report on a formalization of the original
technique in a dependently typed programming language
(turned proof assistant). This yields a complete correctness
proof, with no details left out. Besides demonstrating the
viability of such a completely formal approach to bidirection-
alization, we see further benefits:

1. Exploration of variations of the original technique could
use our formalization as a base line, providing assurance
about preservation of the well-behavedness properties
as one makes adjustments.

2. Thanks to being presented in a very expressive type
theory, the formalization itself already provides more
information about the base technique than the original
work. Specifically, while the original by-hand proofs
established only a partial correctness result, useful
preconditions for total correctness come out of the
mechanized formalization.

3. Finally, also thanks to the very precise types, there
is potential for generally improving the bidirectional-
ization technique itself. Particularly, shape-changing
updates are known to be problematic for semantic bidi-
rectionalization, but a refined technique could leverage
the information about the relationship between the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
BX ’14 Athens, Greece
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

shapes of sources and views now being expressed at
the type level, in a way we sketch and plan to explore
further.

1. INTRODUCTION
We are interested here in well-behaved, state-based, asym-

metric lenses, in which both transformation parts of the BX
are total functions. Formally, let S, V be sets. A lens in
the above sense is a pair of total functions get : S → V and
put : S × V → S for which the following two properties hold:

∀s ∈ S. put(s, get(s)) = s (GetPut)

∀s ∈ S, v ∈ V. get(put(s, v)) = v (PutGet)

Specifically, we are interested in the case when get is a
program in a pure functional programming language and put
is another program in the same language that is automatically
obtained from get somehow.

Voigtländer (2009) presented a concrete technique, seman-
tic bidirectionalization, that lets the programmer write get
in Haskell and delivers a suitable put for it. The technique is
both general and restricted: general in that it works indepen-
dently of the syntactic definition of get, and restricted in that
it requires get to have a certain (parametrically polymorphic)
type. Also, it comes at the price of partiality: even when
get is indeed a total function, the delivered put is in general
partial; and while GetPut indeed holds as given above, Put-
Get becomes conditioned by put(s, v) actually being defined.
Recent works have extended semantic bidirectionalization in
various ways (Matsuda and Wang, 2013, Voigtländer et al.,
2013, Wang and Najd, 2014), both to make it applicable to
more get-functions (lifting restrictions on get’s type, thus
allowing more varied behavior) and to make put (for a given
get) defined on more inputs.

The original paper by Voigtländer (2009) gives proofs of the
base technique, and papers about extensions of the technique
also come with formal statements about correctness (i.e.,
about satisfying GetPut and PutGet) and proofs or proof
sketches thereof. As is typical for by-hand proofs, details
are left out and the reader is asked to believe that certain
lemmas that are not explicitly proved do indeed hold and
could in principle be proved by standard but tedious means.
In the programming languages community there is a move-
ment towards working more rigorously by using mechanized
proof assistants to establish properties of programs (and of
programming languages) in a fully formal way, see for ex-
ample the PoplMark challenge (Aydemir et al., 2005). We
report here on applying this way of thinking to the semantic
bidirectionalization technique, which has led to a complete

formalization (Grohne, 2013) that moreover provides more
precision concerning definedness of put than the previous
proofs. The proof assistant we use is Agda, which at the
same time is a pure functional programming language with
an even more expressive type system than Haskell, and we
take off from there to discuss further potential such expres-
sivity has in making semantic bidirectionalization itself more
useful.

2. LANGUAGE
Agda is what is called a dependently typed programming

language. It is a descendant of Haskell, and it is implemented
in and syntactically similar to Haskell. Based, like Haskell, on
a typed λ-calculus, Agda additionally allows values to occur
as parameters to types. This mixing of types and values
enables us to encode properties into types, and thus the type
checker is able to verify the correctness of proofs: statements
are represented by types and a proof is represented by a
term that has the desired type. For this to work out, a
strong discipline is required so that the type checker’s logic
remains consistent; in particular, all functions must be total

— runtime errors as well as non-termination of programs are
ruled out by a combination of syntactic means and type
checking rules. We give a brief introduction to the language;
a more comprehensive account is given by Norell (2008).

As mentioned, the line between types and values is blurred
in a dependently typed language. As a first example, let
us have a look at the identity function. We use a slightly
simplified version of the definition from the standard library1.

id : {α : Set} → α→ α
id x = x

While the definition itself looks much the same as in any
functional language, the type declaration is different from
what one would have in Haskell, for example. That is be-
cause the availability of dependent types changes the way to
express polymorphism. Instead of some convention treating
certain names in a type (say, all lowercase identifiers) as type
variables, we explicitly say here that α shall be an element of
Set. The type Set contains all types that we will use, except
for itself.2

The next notable difference in the type signature of id is
the use of curly parentheses and the fact that it has two
parameters instead of one. A parameter enclosed in curly
parentheses is called implicit. When the function is defined
or used, implicit parameters are not named or given. Instead,
the type system is supposed to figure out the values of these
parameters. In the case of the identity function, the type
of the explicit parameter will be the value of the implicit
parameter. It is possible to define functions for which the type
system cannot determine the values of implicit parameters.
A type error will be caused in the application of such a
function.

For brevity, we can declare multiple consecutive parameters
of the same type without repeating the type, as can be seen

1The id function is available in the Function module. Further
footnotes about the origin of functions just mention the
module name.
2Actually, Agda knows about a type that contains Set, but
we are not interested in it and further types outside Set.
Therefore, all citations from the standard library have their
support for types beyond Set removed. Eliding those types
allows us to give shorter type signatures.

in the constant function as given in the standard library3.

const : {α β : Set} → α→ β → α
const x = x

The underscore serves as a placeholder for parameters we do
not care about.

Even though the identity and constant functions already
use dependent types, these examples do not illustrate the
benefits of this language feature. To that end, we will have a
look at functions on the data types Fin and Vec soon. Data
types are introduced by notation as follows.

data N : Set where
zero : N
suc : N→ N

This definition introduces the type of natural numbers as
given in the standard library4. This type is named N, is an
element of Set and takes no arguments. It has two construc-
tors, named zero and suc, of which the latter takes a natural
number as a constructor parameter. To write down elements
of this type, we use constructors like functions and apply
them to the required parameters. So zero and suc zero are
examples for elements of N.

Let us have a look at a data type with arguments. The
type of finite numbers, as given in the standard library5,
takes an argument of type N and contains all numbers that
are smaller than the argument.

data Fin : N→ Set where
zero : {n : N} → Fin (suc n)
suc : {n : N} → Fin n→ Fin (suc n)

We can see that declarations of the type and of constructors
have the same syntax as function declarations. The names
of the constructors are shared with the N type. Overloading
of names is allowed for constructors, because their types can
often be inferred from the context. Therefore, the construc-
tors of Fin use the suc constructor of N in their types. Also
note that the type Fin zero has no elements.

The type of homogeneous sequences is also given in the
standard library6.

data List (α : Set) : Set where
[] : List α
:: : α→ List α→ List α

Underscores have a special meaning when used in symbols.
They denote the places where arguments shall be given in an
application. For example, the list containing just the number
zero can be written as zeroN :: []. Here we already have to
disambiguate which zero we are referring to.

Like the Fin type, the List type takes one argument. How-
ever, this argument is given before the colon. We need to
distinguish the places of arguments, because they serve dif-
ferent needs. An argument given after the colon is called
data index. Indices are noted like function types. Symbols
bound there are not visible in constructors. The actual val-
ues given for indices can vary among constructors, as can
be seen in the definition of Fin. Arguments given before
the colon are called data parameters. They are written as

3Function
4Data.Nat
5Data.Fin
6Data.List

a space-separated sequence. All parameters must be given
a name. Symbols bound as parameters can be used both
in the type of indices and constructor type signatures. No
differentiation on parameters is allowed. When declaring a
constructor, parameters must appear unchanged in the result
type of the signature. Parameters of a data type are not
turned into implicit arguments of the constructors, as one
might expect. So functions cannot branch on them when
evaluating an element of a data type.

It is also possible to combine indices and parameters. An
example for this is the type of fixed-length homogeneous
sequences as given in the standard library7.

data Vec (α : Set) : N→ Set where
[] : Vec α zero
:: : {n : N} → α→ Vec α n→ Vec α (suc n)

This definition has similarity to Fin and List and employs both
a parameter and an index. Unlike Fin, [] is only constructible
for a zero index instead of a suc n index. So for each index
value there is precisely one constructor with matching type.

When defining functions on data types, we want to branch
on the constructors by pattern matching. A simple example
is the length function from the standard library6.

length : {α : Set} → List α→ N
length [] = zero
length (:: xs) = suc (length xs)

Unlike in Haskell, clauses must not overlap. For instance,
the following definition will be rejected for covering the case
zero zero twice.

invalid-pattern-match : N→ N→ N
invalid-pattern-match zero = zero
invalid-pattern-match zero = suc zero

It will also be rejected for not covering the case (suc i) (suc j),
since all constructor combinations must be covered to meet
the totality requirement.

Let us look at a truly dependently typed function now.
A common task to perform on sequences is to retrieve an
element from a given position. In Haskell, this can be done
using the (!!) :: [a] -> Int -> a function. When given
a negative number or a number that exceeds the length of
the list, this function fails at runtime. Such behavior is
prohibited by Agda, so a literal translation of this function
is not possible. Ideally, the bound check should happen
at compile time. Such a check requires some knowledge of
the length of the sequence. The Vec type is accompanied
with a corresponding index retrieval function in the standard
library7, as follows.

lookup : {α : Set} {n : N} → Fin n→ Vec α n→ α
lookup zero (x :: xs) = x
lookup (suc i) (x :: xs) = lookup i xs

In this declaration, the implicit parameter n is used as a
type parameter in the remaining function parameters. This
appearance blends the type level and value level that are
clearly separated in Haskell. As a notational remark, the
arrows between parameters in a type signature can be omitted
if the parameters are parenthesized. The declaration above
therefore lacks the arrow separating the implicit parameters.

7Data.Vec

With the totality requirement in mind, the definition of
lookup may seem incomplete, because we omitted the case
of an empty Vec. A closer look reveals that this case cannot
happen. The type of [] is Vec α zero, so it can only occur
when n is zero. There is no constructor for Fin zero how-
ever. The type checker is able to infer this reasoning and
recognizes that our definition covers all type-correct cases.
Another example in a similar spirit is the definition of the
head function from the standard library7.

head : {α : Set} {n : N} → Vec α (suc n)→ α
head (x ::) = x

The input type Vec α (suc n) effectively expresses that only
non-empty lists can be passed — thus, no runtime error like
for the corresponding Haskell function can occur.

For further familiarization, let us look at other polymorphic
functions on Lists and/or Vecs. Our first example is to skip
every other element of a sequence. When implemented using
Lists, its type and implementation closely match what we
would write in Haskell.

sieveList : {α : Set} → List α→ List α
sieveList [] = []
sieveList (x :: []) = x :: []
sieveList (x :: :: xs) = x :: sieveList xs

Writing it using Vec requires us to give a length expression
for the result type. More precisely, we need a function that
relates input length to output length.

d /2e : N→ N
d zero /2e = zero
d suc zero /2e = suc zero
d suc (suc n) /2e = suc d n /2e

It is available from the standard library4 and computes the
upwards rounded division by 2. Equipped with this function,
we can update the type retaining the implementation.

sieveVec : {α : Set} {n : N} → Vec α n
→ Vec α d n /2e

As another example, we consider the function that reverses
a size-indexed list. We can base our implementation on the
dependently typed left fold as does the standard library7.

reverseVec : {α : Set} {n : N} → Vec α n→ Vec α n
reverseVec {α} = foldl (Vec α) (λ rev x→ x :: rev) []

3. SEMANTIC BIDIRECTIONALIZATION
The Haskell version of semantic bidirectionalization, in its

easiest form, works for functions of type [a] -> [a], i.e.,
polymorphic get-functions on homogeneous lists. We want to
translate the Haskell implementation of “put from get” given
by Voigtländer (2009) to Agda, and redevelop the proofs
of the well-behavedness lens laws in parallel. So we should
first look at the type of the forward function in Agda. We
can think of something like sieve or reverse, so a reasonably
general type expressing both the polymorphism and possible
type-level information about lengths, would use vectors as
follows:

get : {α : Set} → {n : N} → Vec α n→ Vec α { ! !}

where { ! !} is a hole that still needs to be filled by some
expression. For the sake of maximal generality, we can turn

the dependence of the output length on the input length into
an explicit function, thus arriving at the following type:

get : Σ (N→ N)
(λ getlen→ ({α : Set} → {n : N}

→ Vec α n→ Vec α (getlen n)))

This is notation for a dependent pair as defined in the stan-
dard library8, expressing here that there is one component
that is a function from N to N and another component whose
type depends on the former function (named getlen). Clearly,
both sieveVec and reverseVec can be embedded thus, for suit-
able choices of the getlen function.

That indeed every polymorphic function on homogeneous
lists has such an embedding depends on free theorems, as
given by Wadler (1989). One free theorem in Haskell is that
for every function of type [a] -> [a] the length of the list
returned is independent of the contents of the passed list,
instead only depending on its length. Correspondingly, for
list-based get the correct getlen function can be constructively
obtained, and then used to define the type of the vector-based
variant of get. The details of this construction are given by
Grohne (2013).

Now we are in a position to give the main construction
from (Voigtländer, 2009). There, it is a Haskell function
named bff (which is a short form of “bidirectionalization for
free”) with the following type:9

bff :: (forall a. [a] -> [a])

-> (forall a. Eq a => [a] -> [a] -> [a])

Apparently, a get-function is turned into a put-function,
where the latter must be allowed to compare elements for
equality. The most interesting bit in Agda of course is how
the type plays out. It does become quite a bit more verbose,
but that verbosity is useful since the additional pieces carry
important information. Without further ado, here is the
Agda type for bff:

bff : {getlen : N→ N}
→ ({α : Set} → {n : N} → Vec α n

→ Vec α (getlen n))
→ {n : N} → Vec Carrier n

→ Vec Carrier (getlen n)
→ Maybe (Vec Carrier n)

Let us discuss this type a bit. First of all note how the de-
pendent pair from the above prototypical Agda type for get,
which has to take the role of the (forall a. [a] -> [a])

argument function in Haskell’s bff, is turned into two argu-
ments for bff by currying. For the produced put, instead of
quantifying over an Eq-constrained type variable, we use a
Carrier type that is a parameter of the Agda module in which
bff is defined. That is solely done for convenience — since
a client of the module can pass an arbitrary type for that
parameter, as long as a decidable equality is defined for that
type, there is no less flexibility when applying the outcome
put-function of bff than there is in the Haskell case. Another
notable difference is that the final outcome is wrapped in
a Maybe. The reason for this is that in Agda all functions
must be total. So while the Haskell implementation fails

8Data.Product
9We do not here consider the versions of bff that work with
input functions of the type forall a. Eq a => [a] -> [a]
or forall a. Ord a => [a] -> [a].

with a runtime error if no suitable result can be produced
by put, in Agda we instead need to explicitly signal error
cases as special values. Finally, the vector lengths in the
type of the produced put-function tell us about shape con-
straints. In fact, mismatches between expected shape (from
the original view obtained from the original source) and
actual shape (from the updated view) are one reason for
runtime errors in the Haskell version of bff. In Agda, trying
to combine a source s that has type Vec Carrier n for some
natural number n with a view v that has any other type
than Vec Carrier (getlen n), in particular one that has any
other length than the expected getlen n, will not even be
type-correct — so a possible runtime error has been turned
into a static check.

The actual definition of bff is not much different than in
Haskell. Using some functions from Agda standard libraries
and some auxiliary functions we do not repeat from (Grohne,
2013) in full here, we arrive at:

FinMapMaybe : N→ Set→ Set
FinMapMaybe m α = Vec (Maybe α) m

checkInsert : {m : N} → Fin m→ Carrier
→ FinMapMaybe m Carrier
→ Maybe (FinMapMaybe m Carrier)

checkInsert i b h with lookup i h
... | nothing = just (insert i b h)
... | just c with deq b c
... | yes b≡c = just h
... | no b6≡c = nothing

assoc : {n m : N} → Vec (Fin m) n→ Vec Carrier n
→ Maybe (FinMapMaybe m Carrier)

assoc {zero} [] [] = just empty
assoc {suc n} (i :: is) (b :: bs) = assoc is bs

>>= checkInsert i b

bff get s v = let s′ = enumerate s
g = tabulate (denumerate s)
h = assoc (get s′) v
h′ = (flip union g) <$> h

in (flip mapVec s′ ◦ flip lookup) <$> h′

We do not explain all syntax used here, in particular the
generalized form of pattern matching via with. Beside the
fact that apart from the more informative types these func-
tion definitions are rather close to those from (Voigtländer,
2009), the more interesting aspect is anyway what we can
prove about them.

4. PROVING CORRECTNESS
Voigtländer (2009) proves two theorems about bff, cor-

responding to GetPut and PutGet. In Agda, a theorem is
represented/encoded as a type and a proof is a term that
has that type. The two theorems as expressed in Agda are:

theorem-1 :
{getlen : N→ N}
→ (get : {α : Set} → {n : N} → Vec α n

→ Vec α (getlen n))
→ {n : N}
→ (s : Vec Carrier n)
→ bff get s (get s) ≡ just s

and:

theorem-2 :
{getlen : N→ N}
→ (get : {α : Set} → {n : N} → Vec α n

→ Vec α (getlen n))
→ {n : N}
→ (s : Vec Carrier n)
→ (v : Vec Carrier (getlen n))
→ (u : Vec Carrier n)
→ bff get s v ≡ just u
→ get u ≡ v

Note how both are first “quantified” — since an argument
type means a piece that the user of the theorem can choose
freely as long as being type-correct — over the ingredients
(a getlen and a get) that are the main inputs to bff. Then,
theorem-1 expresses that for every s and every put obtained as
bff get holds: put s (get s) ≡ just s, i.e., the here appropriate
version of the GetPut law put(s, get(s)) = s. Similarly,
theorem-2 expresses that for every s, v, u, if bff get s v ≡ just u
(note that a precondition simply becomes a function argument
whose type is a statement, and thus whose every value witness
will be a proof object for that statement), then get u ≡ v. In
other words, again for put obtained as bff get: if there is some
u such that put s v ≡ just u, then get of that u is v. That
of course corresponds to the PutGet law, get(put(s, v)) = v,
conditioned by put(s, v) actually being defined.

Complete proof objects for theorem-1 and theorem-2 are
given in the Agda file http://www.iai.uni-bonn.de/~jv/

bx-project/fsbxia.agda accompanying (Grohne, 2013). We
will not give those proofs/terms here; the important thing
is that they exist. What is interesting to record, of course,
is what assumptions they depend on. The only dependency
that is not proved within said formalization itself is the Vec
variant of the free theorem for polymorphic functions on
homogeneous lists. Instead, it is only postulated:

postulate
free-theoremVec :
{getlen : N→ N}
→ (get : {α : Set} → {n : N} → Vec α n

→ Vec α (getlen n))
→ {β γ : Set}
→ (f : β → γ)→ {n : N} → (l : Vec β n)
→ get (mapVec f l) ≡ mapVec f (get l)

where mapVec is from the standard library7. That is the
natural transfer of the free theorem statement for lists from
Wadler (1989) to the setting of vectors. Actually proving it
in Agda as well would require techniques that are orthogonal
to our consideration of the lens laws (Bernardy et al., 2012),
so we opt for keeping it as a postulation here, just as the list
version of that free theorem for Haskell was an assumption
(by all beliefs of the Haskell community a very well-founded
one) in the proofs of Voigtländer (2009). The important
thing is that the proofs of theorem-1 and theorem-2 from
free-theoremVec are now fully machine-checked!

Those proofs themselves proceed via a series of lemmas,
similarly as one would do on paper, but of course Agda is
uncompromising in requiring an explicit argument for each
step. There is no “this is obvious” or “left as an exercise to
the reader” as in (Voigtländer, 2009) and other papers on
semantic bidirectionalization and extensions thereof. Just to
give a taste, here are statements that we encounter which
correspond to Lemmas 1 and 2 of Voigtländer (2009):

lemma-1 :
{m n : N}
→ (is : Vec (Fin m) n)→ (f : Fin m→ Carrier)
→ assoc is (mapVec f is) ≡ just (restrict f (toList is))

lemma-2 :
{m n : N}
→ (is : Vec (Fin m) n)→ (v : Vec Carrier n)
→ (h : FinMapMaybe m Carrier)
→ assoc is v ≡ just h
→ mapVec (flip lookup h) is ≡ mapVec just v

as well as how an induction proof in Agda looks like, for the
former:10

lemma-1 [] f = refl
lemma-1 (i :: is) f = begin

(assoc is (mapVec f is) >>= checkInsert i (f i))
≡〈 cong (λ h→ h >>= checkInsert i (f i)) (lemma-1 is f) 〉

(just (restrict f (toList is)) >>= checkInsert i (f i))
≡〈 refl 〉

checkInsert i (f i) (restrict f (toList is))
≡〈 lemma-checkInsert-restrict f i (toList is) 〉

just (insert i (f i) (restrict f (toList is))) 2

farming out to another auxiliary lemma:

lemma-checkInsert-restrict :
{m : N}
→ (f : Fin m→ Carrier)
→ (i : Fin m)→ (is : List (Fin m))
→ checkInsert i (f i) (restrict f is)
≡ just (restrict f (i :: is))

which in turn requires further inductions, etc. Something
we do not dwell on here is the actual process of arriving
at the proofs, but Grohne (2013) describes in detail how
interactive proof construction works and how Agda lends
a helping hand, while also requiring familiarization with
certain idioms for effective formalization. This guidance
should be helpful when embarking on a similar endeavor
for correctness proofs of other techniques, or when further
developing the provided formalization, to cover extensions
of semantic bidirectionalization already presented in the
literature or still to be explored.

5. SO WHAT?
We have arrived at formal proofs of GetPut and PutGet for

the bidirectionalization technique from (Voigtländer, 2009).
But we already knew, or at least very strongly believed, that
the technique was correct beforehand. After all, the original
paper did contain lemmas, theorems, and proofs that seemed
acceptable to the community. So what have we actually
gained?

Beside the reassuring feeling that comes with a machine-
checked proof, the dependent types and formalization work
bring concrete additional benefits in terms of better under-
standing of the formalized technique and its properties. We
have already remarked on the fact that the Haskell version
of bff can fail with a runtime error, and that one reason for

10The refl steps correspond to reflexivity of propositional
equality ≡. It can be used when Agda is able to prove an
equality by its built-in rewriting strategy based on function
definitions. Such rewriting also happens silently, but of
course always with Agda’s correctness guarantee, in some
other steps.

http://www.iai.uni-bonn.de/~jv/bx-project/fsbxia.agda
http://www.iai.uni-bonn.de/~jv/bx-project/fsbxia.agda

such failure is shape mismatches, and that the constraints
on vector lengths in the Agda types we use prevent those.
Actually, it was already informally observed in previous work
for the Haskell version that only when the shapes of get s and
v are the same is there any hope that put s v is defined, but
the dependent types in the Agda version are both explicit
and more rigorous about this.

And there is more. Even when the shapes are in the correct
relationship, the put obtained as bff get can fail. After all,
that is why we have wrapped the ultimate return type of bff
in a Maybe. Such failure occurs when get duplicates some
list entry from the source and the two copies in the view
are updated to different values. On the other hand, if no
duplication takes place, then bff should not end up returning
nothing (thus signaling failure). In Agda, we can formalize
this intuition based on the following predicate:

data All-different {α : Set} : List α→ Set where
different-[] : All-different []
different-:: : {x : α} {xs : List α}

→ x /∈ xs
→ All-different xs
→ All-different (x :: xs)

What this definition says is that, trivially, the elements of
the empty list are pairwise different, and the elements of a
non-empty list are pairwise different if the head element is
not contained in the tail and if, moreover, the elements of
the tail are pairwise different. Based on All-different, Grohne
(2013) proves a sufficient condition for when an assoc-call
succeeds (i.e., for when there exists some h such that the
result of assoc is just h rather than nothing):

different-assoc :
{m n : N}
→ (u : Vec (Fin m) n)
→ (v : Vec Carrier n)
→ All-different (toList u)
→ ∃ (λ h→ assoc u v ≡ just h)

Moreover, he proves that if a certain assoc-call succeeds, then
the put obtained as bff get succeeds:

lemma-assoc-enough :
{getlen : N→ N}
→ (get : {α : Set} → {n : N} → Vec α n

→ Vec α (getlen n))
→ {n : N}
→ (s : Vec Carrier n)
→ (v : Vec Carrier (getlen n))
→ ∃ (λ h→ assoc (get (enumerate s)) v ≡ just h)
→ ∃ (λ u→ bff get s v ≡ just u)

Combining different-assoc and lemma-assoc-enough, we learn
that bff get s v succeeds, and thus the precondition of Put-
Get/theorem-2 is fulfilled, if

All-different (toList (get (enumerate s)))

holds, where

enumerate : {n : N} → Vec Carrier n→ Vec (Fin n) n

is a function that given a vector of length n produces a
vector that corresponds to the list [0 , 1 , . . . , n-1]. Thus,
we have formally established that a sufficient condition on
get to guarantee that the dependently typed bff get always

succeeds is what is called semantically affine in (Voigtländer
et al., 2013).

Further exploration of semantic bidirectionalization tech-
niques should also profit from the availability of a formaliza-
tion. Indeed, such availability would have benefited us in the
past. For example, the original paper (Voigtländer, 2009)
proved GetPut and PutGet, but only claimed that a third
law, PutPut, also holds. Later work (Foster et al., 2012)
refactored the definition of bff, essentially by formulating it
in terms of the constant-complement approach (Bancilhon
and Spyratos, 1981), to make more apparent that PutPut
indeed holds. But this refactoring required extra care and
consideration to make sure that no other properties were
destroyed. In fact, new arguments were needed for correct-
ness of the refactored version. Of course, the same would
have been the case if an Agda formalization of the original
correctness arguments had already been available, but the
dependent types and proof assistant would have provided a
safety net, just as standard type systems provide a safety
net when refactoring ordinary programs instead of programs
and proofs in one go. Similarly, other and further variations
of semantic bidirectionalization may profit now. It would be
useful to first extend the formalization to treat data struc-
tures other than lists for get to operate on, for example trees;
we foresee no real problems in doing so.

Finally, let us mention a promising new direction for bidi-
rectionalization that uses dependent types not only for veri-
fication but for doing a better job at the bidirectionalization
task itself. The idea here is to turn dependent types into
a ‘plug-in’ in the sense of (Voigtländer et al., 2013). In
brief, the variation of semantic bidirectionalization presented
by Voigtländer et al. (2013) overcomes the limitation of
only being able to handle shape-preserving updates. It does
so by requiring that each invocation of bff is enriched by
a ‘shape bidirectionalizer’, a function that performs well-
behaved updates on an abstraction of sources and views to
the shape level, for example list lengths. Several possibilities
are discussed for solving the shape-level problem, ranging
from requesting programmer input, over search and syntactic
transformations, to bootstrapping semantic bidirectionaliza-
tion for abstracted problems. All this happens in Haskell, but
in Agda we have another resource for such plug-in techniques.
Namely, we can turn to shape information that comes from
the types. Specifically, the getlen functions already express
relationships between source and view list lengths. Since
the propagation direction needed for shape bidirectionalizer
plug-ins is from views to sources, we would actually need
at least a partial inverse of getlen. But with the rich ex-
pressiveness available at the type level in Agda, we could
even explore different abstractions, be they general relations
between source and view shapes, or functions in one or the
other direction. We can also prove connections between these
abstractions, and potentially move between them, depending
on what is most convenient for a given get-function. As a
very simple example of what we have in mind, consider the
tail function with its canonical type in Agda:

tail : {α : Set} {n : N} → Vec α (suc n)→ Vec α n
tail (:: xs) = xs

The type does not only express that tail is only well-defined
on non-empty lists, it also tells us in no uncertain terms that
its input is always exactly one entry longer than its output
(so suc acts as getlen−1 here). Concerning bidirectionality

that tells us that if tail is get and the view list is changed
to some new length, we know exactly what the new source
length should be — exactly the information that a shape
bidirectionalizer plug-in needs to provide, but now actually
available statically by virtue of the very definition of get in
a dependently typed language. We plan to develop a general
technique from this idea, of course with Agda implementation
and formalization going hand in hand.

References
Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn,

J. Nathan Foster, Benjamin C. Pierce, Peter Sewell, Dim-
itrios Vytiniotis, Geoffrey Washburn, Stephanie Weirich,
and Steve Zdancewic. Mechanized metatheory for the
masses: The PoplMark challenge. In Proceedings of
Theorem Proving in Higher Order Logics, volume 3603 of
Lecture Notes in Computer Science, pages 50–65. Springer,
2005. doi: 10.1007/11541868 4.

François Bancilhon and Nicolas Spyratos. Update seman-
tics of relational views. ACM Transactions on Database
Systems, 6(4):557–575, 1981. doi: 10.1145/319628.319634.

Jean-Philippe Bernardy, Patrik Jansson, and Ross Paterson.
Proofs for free — Parametricity for dependent types. Jour-
nal of Functional Programming, 22(2):107–152, 2012. doi:
10.1017/S0956796812000056.

Nils Anders Danielsson et al. The Agda standard library
version 0.6, 2011. URL http://www.cse.chalmers.se/

~nad/software/lib-0.6.tar.gz.

Nate Foster, Kazutaka Matsuda, and Janis Voigtländer.
Three complementary approaches to bidirectional program-
ming. In Spring School on Generic and Indexed Program-
ming (SSGIP 2010), Revised Lectures, volume 7470 of
Lecture Notes in Computer Science, pages 1–46. Springer,
2012. doi: 10.1007/978-3-642-32202-0 1.

Helmut Grohne. Formalizing semantic bidirectional-
ization in Agda. Master’s thesis, University of
Bonn, 2013. URL http://www.iai.uni-bonn.de/~jv/

bx-project/fsbxia-final.pdf. Agda formalization avail-
able at http://www.iai.uni-bonn.de/~jv/bx-project/

fsbxia.agda.

Kazutaka Matsuda and Meng Wang. Bidirectionalization for
free with runtime recording: Or, a light-weight approach
to the view-update problem. In Proceedings of Principles
and Practice of Declarative Programming, pages 297–308.
ACM, 2013. doi: 10.1145/2505879.2505888.

Ulf Norell. Dependently typed programming in Agda. In
Advanced Functional Programming, volume 5832 of Lecture
Notes in Computer Science, pages 230–266. Springer, 2008.
doi: 10.1007/978-3-642-04652-0 5.

Janis Voigtländer. Bidirectionalization for free! (pearl). In
Proceedings of Principles of Programming Languages, pages
165–176. ACM, 2009. doi: 10.1145/1480881.1480904.

Janis Voigtländer, Zhenjiang Hu, Kazutaka Matsuda, and
Meng Wang. Enhancing semantic bidirectionalization
via shape bidirectionalizer plug-ins. Journal of Func-
tional Programming, 23(5):515–551, 2013. doi: 10.1017/
S0956796813000130.

Philip Wadler. Theorems for free! In Proceedings of Func-
tional Programming languages and Computer Architecture,
pages 347–359. ACM, 1989. doi: 10.1145/99370.99404.

Meng Wang and Shayan Najd. Semantic bidirectionalization
revisited. In Proceedings of Partial Evaluation and Program
Manipulation. ACM, 2014. To appear.

http://www.cse.chalmers.se/~nad/software/lib-0.6.tar.gz
http://www.cse.chalmers.se/~nad/software/lib-0.6.tar.gz
http://www.iai.uni-bonn.de/~jv/bx-project/fsbxia-final.pdf
http://www.iai.uni-bonn.de/~jv/bx-project/fsbxia-final.pdf
http://www.iai.uni-bonn.de/~jv/bx-project/fsbxia.agda
http://www.iai.uni-bonn.de/~jv/bx-project/fsbxia.agda

	Introduction
	Language
	Semantic Bidirectionalization
	Proving Correctness
	So What?

